These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19219188)

  • 1. Analog mean-delay method for high-speed fluorescence lifetime measurement.
    Moon S; Won Y; Kim DY
    Opt Express; 2009 Feb; 17(4):2834-49. PubMed ID: 19219188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision and accuracy of the analog mean-delay method for high-speed fluorescence lifetime measurement.
    Won YJ; Han WT; Kim DY
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2026-32. PubMed ID: 21979507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method.
    Won Y; Moon S; Yang W; Kim D; Han WT; Kim DY
    Opt Express; 2011 Feb; 19(4):3396-405. PubMed ID: 21369162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Referencing techniques for the analog mean-delay method in fluorescence lifetime imaging.
    Won YJ; Moon S; Han WT; Kim DY
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):2402-10. PubMed ID: 21045905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence lifetime plate reader: resolution and precision meet high-throughput.
    Petersen KJ; Peterson KC; Muretta JM; Higgins SE; Gillispie GD; Thomas DD
    Rev Sci Instrum; 2014 Nov; 85(11):113101. PubMed ID: 25430092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy.
    Sorrells JE; Iyer RR; Yang L; Chaney EJ; Marjanovic M; Tu H; Boppart SA
    Opt Express; 2021 Nov; 29(23):37759-37775. PubMed ID: 34808842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined depth- and time-resolved autofluorescence spectroscopy of epithelial tissue.
    Wu Y; Qu JY
    Opt Lett; 2006 Jun; 31(12):1833-5. PubMed ID: 16729086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy.
    Palo K; Brand L; Eggeling C; Jäger S; Kask P; Gall K
    Biophys J; 2002 Aug; 83(2):605-18. PubMed ID: 12124251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-speed time-resolved laser-scanning microscopy using the line-to-pixel referencing method.
    Ryu J; Kim J; Kim H; Jeong JH; Lee HJ; Yoo H; Gweon DG
    Appl Opt; 2016 Nov; 55(32):9033-9041. PubMed ID: 27857286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance time-resolved fluorescence by direct waveform recording.
    Muretta JM; Kyrychenko A; Ladokhin AS; Kast DJ; Gillispie GD; Thomas DD
    Rev Sci Instrum; 2010 Oct; 81(10):103101. PubMed ID: 21034069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast, flexible algorithm for calculating photon correlations.
    Laurence TA; Fore S; Huser T
    Opt Lett; 2006 Mar; 31(6):829-31. PubMed ID: 16544638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography.
    Nam HS; Kang WJ; Lee MW; Song JW; Kim JW; Oh WY; Yoo H
    Biomed Opt Express; 2018 Apr; 9(4):1930-1947. PubMed ID: 29675330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy.
    Krstajić N; Levitt J; Poland S; Ameer-Beg S; Henderson R
    Opt Express; 2015 Mar; 23(5):5653-69. PubMed ID: 25836796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed.
    Walsh AJ; Sharick JT; Skala MC; Beier HT
    Biomed Opt Express; 2016 Apr; 7(4):1385-99. PubMed ID: 27446663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrument response standard in time-resolved fluorescence spectroscopy at visible wavelength: quenched fluorescein sodium.
    Liu M; Jia M; Pan H; Li L; Chang M; Ren H; Argoul F; Zhang S; Xu J
    Appl Spectrosc; 2014; 68(5):577-83. PubMed ID: 25014602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single fluorescent gold nanoclusters.
    Yuan CT; Chou WC; Tang J; Lin CA; Chang WH; Shen JL; Chuu DS
    Opt Express; 2009 Aug; 17(18):16111-8. PubMed ID: 19724611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy.
    Driscoll JD; Shih AY; Iyengar S; Field JJ; White GA; Squier JA; Cauwenberghs G; Kleinfeld D
    J Neurophysiol; 2011 Jun; 105(6):3106-13. PubMed ID: 21471395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Photon Counting Using Multithreshold Peak Detection for Fast Fluorescence Lifetime Imaging Microscopy.
    Sorrells JE; Iyer RR; Yang L; Martin EM; Wang G; Tu H; Marjanovic M; Boppart SA
    ACS Photonics; 2022 Aug; 9(8):2748-2755. PubMed ID: 35996369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of time correlated single photon counting FRET-FLIM data.
    Grecco HE; Roda-Navarro P; Verveer PJ
    Opt Express; 2009 Apr; 17(8):6493-508. PubMed ID: 19365474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed.
    Esposito A; Gerritsen HC; Wouters FS
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3261-73. PubMed ID: 17912319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.