These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19219566)

  • 1. Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies.
    Pieper U; Chiang R; Seffernick JJ; Brown SD; Glasner ME; Kelly L; Eswar N; Sauder JM; Bonanno JB; Swaminathan S; Burley SK; Zheng X; Chance MR; Almo SC; Gerlt JA; Raushel FM; Jacobson MP; Babbitt PC; Sali A
    J Struct Funct Genomics; 2009 Apr; 10(2):107-25. PubMed ID: 19219566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies.
    Gerlt JA; Babbitt PC
    Annu Rev Biochem; 2001; 70():209-46. PubMed ID: 11395407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase superfamily.
    Glasner ME; Fayazmanesh N; Chiang RA; Sakai A; Jacobson MP; Gerlt JA; Babbitt PC
    J Mol Biol; 2006 Jun; 360(1):228-50. PubMed ID: 16740275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural determination of phosphosulfolactate synthase from Methanococcus jannaschii at 1.7-A resolution: an enolase that is not an enolase.
    Wise EL; Graham DE; White RH; Rayment I
    J Biol Chem; 2003 Nov; 278(46):45858-63. PubMed ID: 12952952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. At the periphery of the amidohydrolase superfamily: Bh0493 from Bacillus halodurans catalyzes the isomerization of D-galacturonate to D-tagaturonate.
    Nguyen TT; Brown S; Fedorov AA; Fedorov EV; Babbitt PC; Almo SC; Raushel FM
    Biochemistry; 2008 Jan; 47(4):1194-206. PubMed ID: 18171028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from Oceanobacillus iheyensis .
    Rakus JF; Kalyanaraman C; Fedorov AA; Fedorov EV; Mills-Groninger FP; Toro R; Bonanno J; Bain K; Sauder JM; Burley SK; Almo SC; Jacobson MP; Gerlt JA
    Biochemistry; 2009 Dec; 48(48):11546-58. PubMed ID: 19883118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress of structural genomics initiatives: an analysis of solved target structures.
    Todd AE; Marsden RL; Thornton JM; Orengo CA
    J Mol Biol; 2005 May; 348(5):1235-60. PubMed ID: 15854658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent evolution in enolase superfamily: strategies for assigning functions.
    Gerlt JA; Babbitt PC; Jacobson MP; Almo SC
    J Biol Chem; 2012 Jan; 287(1):29-34. PubMed ID: 22069326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of enzymatic activities in the enolase superfamily: structure of a substrate-liganded complex of the L-Ala-D/L-Glu epimerase from Bacillus subtilis.
    Klenchin VA; Schmidt DM; Gerlt JA; Rayment I
    Biochemistry; 2004 Aug; 43(32):10370-8. PubMed ID: 15301535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superfamily active site templates.
    Meng EC; Polacco BJ; Babbitt PC
    Proteins; 2004 Jun; 55(4):962-76. PubMed ID: 15146493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids.
    Babbitt PC; Hasson MS; Wedekind JE; Palmer DR; Barrett WC; Reed GH; Rayment I; Ringe D; Kenyon GL; Gerlt JA
    Biochemistry; 1996 Dec; 35(51):16489-501. PubMed ID: 8987982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of an enzyme active site: the structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase.
    Hasson MS; Schlichting I; Moulai J; Taylor K; Barrett W; Kenyon GL; Babbitt PC; Gerlt JA; Petsko GA; Ringe D
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10396-401. PubMed ID: 9724714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional annotation and three-dimensional structure of an incorrectly annotated dihydroorotase from cog3964 in the amidohydrolase superfamily.
    Ornelas A; Korczynska M; Ragumani S; Kumaran D; Narindoshvili T; Shoichet BK; Swaminathan S; Raushel FM
    Biochemistry; 2013 Jan; 52(1):228-38. PubMed ID: 23214420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annotation transfer for genomics: measuring functional divergence in multi-domain proteins.
    Hegyi H; Gerstein M
    Genome Res; 2001 Oct; 11(10):1632-40. PubMed ID: 11591640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily.
    Roodveldt C; Tawfik DS
    Biochemistry; 2005 Sep; 44(38):12728-36. PubMed ID: 16171387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of enzyme superfamilies.
    Glasner ME; Gerlt JA; Babbitt PC
    Curr Opin Chem Biol; 2006 Oct; 10(5):492-7. PubMed ID: 16935022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.
    Chiang RA; Sali A; Babbitt PC
    PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily.
    Lukk T; Sakai A; Kalyanaraman C; Brown SD; Imker HJ; Song L; Fedorov AA; Fedorov EV; Toro R; Hillerich B; Seidel R; Patskovsky Y; Vetting MW; Nair SK; Babbitt PC; Almo SC; Gerlt JA; Jacobson MP
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4122-7. PubMed ID: 22392983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity.
    Lohkamp B; Andersen B; Piškur J; Dobritzsch D
    J Biol Chem; 2006 May; 281(19):13762-13776. PubMed ID: 16517602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.