BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19219817)

  • 1. Biomechanics of a new short-stemmed uncemented hip prosthesis: An in-vitro study in human bone.
    Westphal FM; Bishop N; Puschel K; Morlock MM
    Hip Int; 2006; 16 Suppl 3():22-30. PubMed ID: 19219817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration and cyclic motion of a new short-stemmed hip prosthesis--a biomechanical in vitro study.
    Westphal FM; Bishop N; Honl M; Hille E; Püschel K; Morlock MM
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):834-40. PubMed ID: 16806616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions.
    Fottner A; Schmid M; Birkenmaier C; Mazoochian F; Plitz W; Volkmar J
    Clin Biomech (Bristol, Avon); 2009 Jun; 24(5):429-34. PubMed ID: 19307048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straight-stem and curved-stem designs.
    Callaghan JJ; Fulghum CS; Glisson RR; Stranne SK
    J Bone Joint Surg Am; 1992 Jul; 74(6):839-48. PubMed ID: 1634574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial stability of fully and partially cemented femoral stems.
    Claes L; Fiedler S; Ohnmacht M; Duda GN
    Clin Biomech (Bristol, Avon); 2000 Dec; 15(10):750-5. PubMed ID: 11050357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximal humeral fractures: how stiff should an implant be? A comparative mechanical study with new implants in human specimens.
    Lill H; Hepp P; Korner J; Kassi JP; Verheyden AP; Josten C; Duda GN
    Arch Orthop Trauma Surg; 2003 Apr; 123(2-3):74-81. PubMed ID: 12721684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancellous bone strains indicate efficacy of stem augmentation in constrained condylar knees.
    Rawlinson JJ; Peters LE; Campbell DA; Windsor R; Wright TM; Bartel DL
    Clin Orthop Relat Res; 2005 Nov; 440():107-16. PubMed ID: 16239792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of distal stem geometry on interface motion in uncemented revision total hip prostheses.
    Kirk KL; Potter BK; Lehman RA; Xenos JS
    Am J Orthop (Belle Mead NJ); 2007 Oct; 36(10):545-9. PubMed ID: 18033566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial stability of a new uncemented short-stem prosthesis, Spiron®, in dog bone.
    Wiebking U; Birkenhauer B; Krettek C; Gösling T
    Technol Health Care; 2011; 19(4):271-82. PubMed ID: 21849737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical evaluation of screw-in femoral implant in cementless total hip system.
    Kim JY; Hayashi K; Garcia TC; Kim SY; Entwistle R; Kapatkin AS; Stover SM
    Vet Surg; 2012 Jan; 41(1):94-102. PubMed ID: 22092256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load-shift--numerical evaluation of a new design philosophy for uncemented hip prostheses.
    Goetzen N; Lampe F; Nassut R; Morlock MM
    J Biomech; 2005 Mar; 38(3):595-604. PubMed ID: 15652559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical evaluation of the docking nail concept in periprosthetic fracture fixation around a stemmed total knee arthroplasty.
    Lenz M; Acklin YP; Kasper LA; Mischler D; Varga P; Zderic I; Gehweiler D; Klos K; Gueorguiev B; Stoffel K
    J Biomech; 2021 Jan; 115():110109. PubMed ID: 33257010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation pattern and load transfer of an uncemented femoral stem with modular necks. An experimental study in human cadaver femurs.
    Enoksen CH; Gjerdet NR; Klaksvik J; Arthursson AJ; Schnell-Husby O; Wik TS
    Clin Biomech (Bristol, Avon); 2016 Feb; 32():28-33. PubMed ID: 26785385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of the helica femoral implant system using traditional and modified techniques.
    Dosch M; Hayashi K; Garcia TC; Weeren R; Stover SM
    Vet Surg; 2013 Oct; 42(7):867-76. PubMed ID: 23980642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conus hip prosthesis.
    Wagner H; Wagner M
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):213-21. PubMed ID: 11706545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The compression-rotation stem: an experimental study on the primary stability of a new revision hip stem.
    Kraenzlein J; Mazoochian F; Fottner A; Birkenmaier C; von Schulze Pellengahr C; Jansson V
    Proc Inst Mech Eng H; 2009 Jan; 223(1):45-52. PubMed ID: 19239066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel locking screw hip stem to achieve immediate stability in total hip arthroplasty: A biomechanical study.
    Grechenig S; Gueorguiev B; Berner A; Heiss P; Müller M; Nerlich M; Schmitz P
    Injury; 2015 Oct; 46 Suppl 4():S83-7. PubMed ID: 26542871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics of a short stem: In vitro primary stability and stress shielding of a conservative cementless hip stem.
    Bieger R; Ignatius A; Reichel H; Dürselen L
    J Orthop Res; 2013 Aug; 31(8):1180-6. PubMed ID: 23553802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary stability and strain distribution of cementless hip stems as a function of implant design.
    Bieger R; Ignatius A; Decking R; Claes L; Reichel H; Dürselen L
    Clin Biomech (Bristol, Avon); 2012 Feb; 27(2):158-64. PubMed ID: 21889243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.