BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1921991)

  • 1. Complementary in vivo and in vitro analyses of the interactions between the cis-acting elements of the rat rDNA promoter.
    Xie WQ; O'Mahony DJ; Smith SD; Rothblum L
    Mol Cell Biochem; 1991 May 29-Jun 12; 104(1-2):127-35. PubMed ID: 1921991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the rat ribosomal DNA promoter: characterization of linker-scanning mutants and of the binding of UBF.
    Xie W; O'Mahony DJ; Smith SD; Lowe D; Rothblum LI
    Nucleic Acids Res; 1992 Apr; 20(7):1587-92. PubMed ID: 1579451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of TATA-binding protein-TAFI complex SL1 to the human ribosomal DNA promoter is mediated by the carboxy-terminal activation domain of upstream binding factor (UBF) and is regulated by UBF phosphorylation.
    Tuan JC; Zhai W; Comai L
    Mol Cell Biol; 1999 Apr; 19(4):2872-9. PubMed ID: 10082553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription from the rat 45S ribosomal DNA promoter does not require the factor UBF.
    Smith SD; O'Mahony DJ; Kinsella BT; Rothblum LI
    Gene Expr; 1993; 3(3):229-36. PubMed ID: 8019125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiprotein transcription factor UAF interacts with the upstream element of the yeast RNA polymerase I promoter and forms a stable preinitiation complex.
    Keys DA; Lee BS; Dodd JA; Nguyen TT; Vu L; Fantino E; Burson LM; Nogi Y; Nomura M
    Genes Dev; 1996 Apr; 10(7):887-903. PubMed ID: 8846924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domains of the rat rDNA promoter must be aligned stereospecifically.
    Xie WQ; Rothblum LI
    Mol Cell Biol; 1992 Mar; 12(3):1266-75. PubMed ID: 1545808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mouse rRNA gene transcription factor mUBF requires both HMG-box1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism.
    Maeda Y; Hisatake K; Kondo T; Hanada K; Song CZ; Nishimura T; Muramatsu M
    EMBO J; 1992 Oct; 11(10):3695-704. PubMed ID: 1396565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of factors that direct transcription of rat ribosomal DNA.
    Smith SD; Oriahi E; Lowe D; Yang-Yen HF; O'Mahony D; Rose K; Chen K; Rothblum LI
    Mol Cell Biol; 1990 Jun; 10(6):3105-16. PubMed ID: 2342470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and functional characterization of TIF-IB, a factor that confers promoter specificity to mouse RNA polymerase I.
    Schnapp A; Clos J; Hädelt W; Schreck R; Cvekl A; Grummt I
    Nucleic Acids Res; 1990 Mar; 18(6):1385-93. PubMed ID: 2326184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter.
    Friedrich JK; Panov KI; Cabart P; Russell J; Zomerdijk JC
    J Biol Chem; 2005 Aug; 280(33):29551-8. PubMed ID: 15970593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules.
    Stefanovsky VY; Pelletier G; Bazett-Jones DP; Crane-Robinson C; Moss T
    Nucleic Acids Res; 2001 Aug; 29(15):3241-7. PubMed ID: 11470882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the 130-bp repeat enhancer element of the rat ribosomal gene: functional interaction with transcription factor E1BF.
    Ghosh AK; Hoff CM; Jacob ST
    Gene; 1993 Mar; 125(2):217-22. PubMed ID: 8462876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of in situ conformation of ribosomal genes and selective distribution of upstream binding factor in rRNA transcription.
    Junéra HR; Masson C; Géraud G; Suja J; Hernandez-Verdun D
    Mol Biol Cell; 1997 Jan; 8(1):145-56. PubMed ID: 9017602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1.
    Hannan KM; Hannan RD; Smith SD; Jefferson LS; Lun M; Rothblum LI
    Oncogene; 2000 Oct; 19(43):4988-99. PubMed ID: 11042686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ribosomal DNA transcription during contraction-induced hypertrophy of neonatal cardiomyocytes.
    Hannan RD; Luyken J; Rothblum LI
    J Biol Chem; 1996 Feb; 271(6):3213-20. PubMed ID: 8621723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of ribosomal DNA transcription by insulin.
    Hannan KM; Rothblum LI; Jefferson LS
    Am J Physiol; 1998 Jul; 275(1):C130-8. PubMed ID: 9688843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF.
    Lin CY; Tuan J; Scalia P; Bui T; Comai L
    Curr Biol; 2002 Dec; 12(24):2142-6. PubMed ID: 12498690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RNA polymerase I-specific transcription initiation factor UBF is associated with transcriptionally active and inactive ribosomal genes.
    Zatsepina OV; Voit R; Grummt I; Spring H; Semenov MV; Trendelenburg MF
    Chromosoma; 1993 Nov; 102(9):599-611. PubMed ID: 8306821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Xenopus RNA polymerase I transcription factor, UBF, has a role in transcriptional enhancement distinct from that at the promoter.
    McStay B; Sullivan GJ; Cairns C
    EMBO J; 1997 Jan; 16(2):396-405. PubMed ID: 9029158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the transcription factor UBF1 is sufficient to increase ribosomal DNA transcription in neonatal cardiomyocytes: implications for cardiac hypertrophy.
    Hannan RD; Stefanovsky V; Taylor L; Moss T; Rothblum LI
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8750-5. PubMed ID: 8710943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.