These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 19220867)
1. Oxygen is required to restore flor strain viability and lipid biosynthesis under fermentative conditions. Zara G; Angelozzi D; Belviso S; Bardi L; Goffrini P; Lodi T; Budroni M; Mannazzu I FEMS Yeast Res; 2009 Mar; 9(2):217-25. PubMed ID: 19220867 [TBL] [Abstract][Full Text] [Related]
2. Correlation between cell lipid content, gene expression and fermentative behaviour of two Saccharomyces cerevisiae wine strains. Zara G; Bardi L; Belviso S; Farris GA; Zara S; Budroni M J Appl Microbiol; 2008 Mar; 104(3):906-14. PubMed ID: 17961155 [TBL] [Abstract][Full Text] [Related]
3. FLO11 expression and lipid biosynthesis are required for air-liquid biofilm formation in a Saccharomyces cerevisiae flor strain. Zara G; Goffrini P; Lodi T; Zara S; Mannazzu I; Budroni M FEMS Yeast Res; 2012 Nov; 12(7):864-6. PubMed ID: 22805178 [TBL] [Abstract][Full Text] [Related]
4. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: cell lipid composition, membrane integrity, viability and fermentative activity. Mannazzu I; Angelozzi D; Belviso S; Budroni M; Farris GA; Goffrini P; Lodi T; Marzona M; Bardi L Int J Food Microbiol; 2008 Jan; 121(1):84-91. PubMed ID: 18055051 [TBL] [Abstract][Full Text] [Related]
5. Peculiarities of flor strains adapted to Sardinian sherry-like wine ageing conditions. Budroni M; Zara S; Zara G; Pirino G; Mannazzu I FEMS Yeast Res; 2005 Jul; 5(10):951-8. PubMed ID: 15946905 [TBL] [Abstract][Full Text] [Related]
6. FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. Ishigami M; Nakagawa Y; Hayakawa M; Iimura Y FEMS Microbiol Lett; 2004 Aug; 237(2):425-30. PubMed ID: 15321692 [TBL] [Abstract][Full Text] [Related]
7. The role of oxygen in yeast metabolism during high cell density brewery fermentations. Verbelen PJ; Saerens SM; Van Mulders SE; Delvaux F; Delvaux FR Appl Microbiol Biotechnol; 2009 Apr; 82(6):1143-56. PubMed ID: 19263049 [TBL] [Abstract][Full Text] [Related]
8. Lipid nutrition of Saccharomyces cerevisiae in winemaking. Belviso S; Bardi L; Bartolini AB; Marzona M Can J Microbiol; 2004 Sep; 50(9):669-74. PubMed ID: 15644919 [TBL] [Abstract][Full Text] [Related]
9. Regulated transcription of the Saccharomyces cerevisiae phosphatidylinositol biosynthetic gene, PIS1, yields pleiotropic effects on phospholipid synthesis. Jani NM; Lopes JM FEMS Yeast Res; 2009 Jun; 9(4):552-64. PubMed ID: 19456874 [TBL] [Abstract][Full Text] [Related]
10. The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. Verbelen PJ; Depraetere SA; Winderickx J; Delvaux FR; Delvaux F FEMS Yeast Res; 2009 Mar; 9(2):226-39. PubMed ID: 19175415 [TBL] [Abstract][Full Text] [Related]
11. Study of the lipidic and proteic composition of an industrial filmogenic yeast with applications as a nutritional supplement. Marques F; Lasanta C; Caro I; Pérez L J Agric Food Chem; 2008 Dec; 56(24):12025-30. PubMed ID: 19090714 [TBL] [Abstract][Full Text] [Related]
12. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307 [TBL] [Abstract][Full Text] [Related]
13. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715 [TBL] [Abstract][Full Text] [Related]
14. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669 [TBL] [Abstract][Full Text] [Related]
15. Factors involved in anaerobic growth of Saccharomyces cerevisiae. Ishtar Snoek IS; Yde Steensma H Yeast; 2007 Jan; 24(1):1-10. PubMed ID: 17192845 [TBL] [Abstract][Full Text] [Related]
16. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion. Desfougères T; Ferreira T; Bergès T; Régnacq M Biochem J; 2008 Jan; 409(1):299-309. PubMed ID: 17803462 [TBL] [Abstract][Full Text] [Related]
17. The oxygen level determines the fermentation pattern in Kluyveromyces lactis. Merico A; Galafassi S; Piskur J; Compagno C FEMS Yeast Res; 2009 Aug; 9(5):749-56. PubMed ID: 19500150 [TBL] [Abstract][Full Text] [Related]
18. Influence of skin maceration and oxygen on anaerobic fermentation of grape musts with high sugar content. Valero E; Millán MC; Ortega JM Microbios; 2001; 106(414):111-27. PubMed ID: 11506062 [TBL] [Abstract][Full Text] [Related]
19. Forever panting and forever growing: physiology of Saccharomyces cerevisiae at extremely low oxygen availability in the absence of ergosterol and unsaturated fatty acids. da Costa BLV; Raghavendran V; Franco LFM; Chaves Filho AB; Yoshinaga MY; Miyamoto S; Basso TO; Gombert AK FEMS Yeast Res; 2019 Sep; 19(6):. PubMed ID: 31425576 [TBL] [Abstract][Full Text] [Related]
20. Differential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation. Moreno-García J; Mauricio JC; Moreno J; García-Martínez T Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28350350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]