These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19220993)

  • 1. Parameters for assessing recycled aggregate and their correlation.
    Tam VW; Tam CM
    Waste Manag Res; 2009 Feb; 27(1):52-8. PubMed ID: 19220993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal aggregate testing using Vandermonde polynomials and spectral methods.
    Tam VW; Le KN
    J Hazard Mater; 2007 Jun; 145(1-2):72-99. PubMed ID: 17157436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative environmental assessment of natural and recycled aggregate concrete.
    Marinković S; Radonjanin V; Malešev M; Ignjatović I
    Waste Manag; 2010 Nov; 30(11):2255-64. PubMed ID: 20434898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.
    Tam VW; Wang K; Tam CM
    J Hazard Mater; 2008 Apr; 152(2):703-14. PubMed ID: 17764837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cause and influence of self-cementing properties of fine recycled concrete aggregates on the properties of unbound sub-base.
    Poon CS; Qiao XC; Chan D
    Waste Manag; 2006; 26(10):1166-72. PubMed ID: 16488593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of Hong Kong's Construction Waste Disposal Charging Scheme.
    Hao JL; Hills MJ; Tam VW
    Waste Manag Res; 2008 Dec; 26(6):553-8. PubMed ID: 19039072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete.
    Juric B; Hanzic L; Ilić R; Samec N
    Waste Manag; 2006; 26(12):1436-42. PubMed ID: 16448812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of concrete blocks prepared with low grade recycled aggregates.
    Poon CS; Kou SC; Wan HW; Etxeberria M
    Waste Manag; 2009 Aug; 29(8):2369-77. PubMed ID: 19398196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of waste glass as a partial replacement for fine aggregate in concrete.
    Ismail ZZ; Al-Hashmi EA
    Waste Manag; 2009 Feb; 29(2):655-9. PubMed ID: 18848773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.
    Sim J; Park C
    Waste Manag; 2011 Nov; 31(11):2352-60. PubMed ID: 21784626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the waste reduction potential of using prefabrication in building construction in Hong Kong.
    Jaillon L; Poon CS; Chiang YH
    Waste Manag; 2009 Jan; 29(1):309-20. PubMed ID: 18434128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of rubble from building demolition for low-shrinkage concretes.
    Corinaldesi V; Moriconi G
    Waste Manag; 2010 Apr; 30(4):655-9. PubMed ID: 20022737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reuse of ground waste glass as aggregate for mortars.
    Corinaldesi V; Gnappi G; Moriconi G; Montenero A
    Waste Manag; 2005; 25(2):197-201. PubMed ID: 15737718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching and mechanical behaviour of concrete manufactured with recycled aggregates.
    Sani D; Moriconi G; Fava G; Corinaldesi V
    Waste Manag; 2005; 25(2):177-82. PubMed ID: 15737715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycled lightweight concrete made from footwear industry waste and CDW.
    Lima PR; Leite MB; Santiago EQ
    Waste Manag; 2010 Jun; 30(6):1107-13. PubMed ID: 20189792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.
    Kou SC; Lee G; Poon CS; Lai WL
    Waste Manag; 2009 Feb; 29(2):621-8. PubMed ID: 18691863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete.
    Guerra I; Vivar I; Llamas B; Juan A; Moran J
    Waste Manag; 2009 Feb; 29(2):643-6. PubMed ID: 18684611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties.
    López-Gayarre F; Serna P; Domingo-Cabo A; Serrano-López MA; López-Colina C
    Waste Manag; 2009 Dec; 29(12):3022-8. PubMed ID: 19709870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength.
    Aiello MA; Leuzzi F; Centonze G; Maffezzoli A
    Waste Manag; 2009 Jun; 29(6):1960-70. PubMed ID: 19167204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes.
    Barbudo A; Galvín AP; Agrela F; Ayuso J; Jiménez JR
    Waste Manag; 2012 Jun; 32(6):1229-35. PubMed ID: 22410435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.