These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 192210)
1. The effects of bathophenanthroline, bathophenanthrolinesulphonate and 2-thenoyltrifluoroacetone on mung-bean mitochondria and submitochondrial particles. Rich PR; Moore AL; Bonner WD Biochem J; 1977 Jan; 162(1):205-8. PubMed ID: 192210 [TBL] [Abstract][Full Text] [Related]
2. Distinction between NAD- and NADH-binding forms of mitochondrial malate dehydrogenase as shown by inhibition with thenoyltrifuoroacetone. Gutman M; Hartstein E Biochim Biophys Acta; 1977 Mar; 481(1):33-41. PubMed ID: 191083 [TBL] [Abstract][Full Text] [Related]
3. Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin. Trumpower BL; Simmons Z J Biol Chem; 1979 Jun; 254(11):4608-16. PubMed ID: 220256 [No Abstract] [Full Text] [Related]
4. Effect of thenoyltrifluoroacetone on oxygen consumption and energy conservation in isolated rat liver mitochondria. Ulvik R; Romslo I FEBS Lett; 1975 Nov; 59(2):180-3. PubMed ID: 1227932 [No Abstract] [Full Text] [Related]
5. Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin. Ksenzenko M; Konstantinov AA; Khomutov GB; Tikhonov AN; Ruuge EK FEBS Lett; 1984 Sep; 175(1):105-8. PubMed ID: 6090204 [TBL] [Abstract][Full Text] [Related]
6. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism. Rustin P; Lance C Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of mitochondrial electron transport by hydrophilic metal chelators. Determination of dehydrogenase topography. Harmon HJ; Crane FL Biochim Biophys Acta; 1976 Jul; 440(1):45-58. PubMed ID: 947364 [TBL] [Abstract][Full Text] [Related]
8. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines? Krueger MJ; Tan AK; Ackrell BA; Singer TP Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493 [TBL] [Abstract][Full Text] [Related]
9. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
10. Effects of carbon dioxide-bicarbonate mixtures on oxidative phosphorylation by cauliflower mitochondria. Miller GW; Hsu WJ Biochem J; 1965 Dec; 97(3):615-9. PubMed ID: 4286673 [TBL] [Abstract][Full Text] [Related]
11. The oxidation of exogenous reduced nicotinamide-adenine dinucleotide by plant mitochondria. Palmer JM; Passam HC Biochem J; 1971 Mar; 122(1):16P-17P. PubMed ID: 4330962 [No Abstract] [Full Text] [Related]
12. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Berridge MV; Tan AS Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225 [TBL] [Abstract][Full Text] [Related]
13. Difference in 2-thenoyltrifluoroacetone sensitivity of electron transport with and against the redox potential gradient. Streichman S; Avi-Dor Y Biochim Biophys Acta; 1970 Sep; 216(2):262-9. PubMed ID: 4396181 [No Abstract] [Full Text] [Related]
14. [Effect of tenoyltrifluoroacetone on the functioning of mitochondria and other membrane structures]. Gagel'gans AI; Shkinevv AV; Zamaraeva MV; Krasil'nikov OV; TernovskiÄ VI Biokhimiia; 1980 Dec; 45(12):2165-75. PubMed ID: 7248351 [TBL] [Abstract][Full Text] [Related]
15. The probable site of action of thenolytrifluoracetone on the respiratory chain. Ingledew WJ; Ohnishi T Biochem J; 1977 Jun; 164(3):617-20. PubMed ID: 196591 [TBL] [Abstract][Full Text] [Related]
16. Characterization of cyanide-insensitive respiration in mitochondria and submitochondrial particles of Moniliella tomentosa. Vanderleyden J; Kurth J; Verachtert H Biochem J; 1979 Aug; 182(2):437-43. PubMed ID: 228654 [TBL] [Abstract][Full Text] [Related]
17. Diminished inhibition of succinate-cytochrome c reductase activity of resolved reductase complex by thenoyltrifluoroacetone in the presence of antimycin. Trumpower BL; Simons Z Biochem Biophys Res Commun; 1978 May; 82(1):289-95. PubMed ID: 208556 [No Abstract] [Full Text] [Related]
18. [Oxidation of malate, NADH and glycine in C3 and C4 plant mitochondria]. Neuburger M; Douce R C R Acad Hebd Seances Acad Sci D; 1977 Oct; 285(8):881-4. PubMed ID: 199373 [TBL] [Abstract][Full Text] [Related]
19. [Effect of cobalt and copper complexes with o-phenanthroline on the respiratory activity of mitochondria]. Guzhova NV; Novodarova GN; Kolosova EM; Vol'pin ME Biokhimiia; 1979 Aug; 44(8):1369-76. PubMed ID: 497283 [TBL] [Abstract][Full Text] [Related]
20. [5-Alkyl(C19-C25) resorcinols as regulators of succinate and NAD-dependent substrate oxidation by mitochondria]. Nenashev VA; Pridachina NN; Pronevich LA; Batrakov SG Biokhimiia; 1989 May; 54(5):784-7. PubMed ID: 2758080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]