These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 19221124)

  • 1. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles.
    Li WC; Roberts A; Soffe SR
    J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control.
    Soffe SR; Roberts A; Li WC
    J Physiol; 2009 Oct; 587(Pt 20):4829-44. PubMed ID: 19703959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors.
    Li WC; Roberts A; Soffe SR
    J Neurosci; 2010 Dec; 30(49):16609-20. PubMed ID: 21148000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles.
    Zhang HY; Li WC; Heitler WJ; Sillar KT
    J Physiol; 2009 Sep; 587(Pt 18):4455-66. PubMed ID: 19635820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of locomotion rhythms without inhibition in vertebrates: the search for pacemaker neurons.
    Li WC
    Integr Comp Biol; 2011 Dec; 51(6):879-89. PubMed ID: 21562024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of Single, Possible CHX10 Hindbrain Neurons Turns Swimming On and Off in Young
    Li WC; Soffe SR
    Front Cell Neurosci; 2019; 13():47. PubMed ID: 30873004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.
    Li WC; Merrison-Hort R; Zhang HY; Borisyuk R
    J Neurosci; 2014 Apr; 34(17):6065-77. PubMed ID: 24760866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The control of locomotor frequency by excitation and inhibition.
    Li WC; Moult PR
    J Neurosci; 2012 May; 32(18):6220-30. PubMed ID: 22553028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles.
    Li WC; Perrins R; Walford A; Roberts A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jan; 189(1):29-37. PubMed ID: 12548427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles.
    Wolf E; Soffe SR; Roberts A
    J Comput Neurosci; 2009 Oct; 27(2):291-308. PubMed ID: 19288183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of a trigeminal sensory nucleus in the initiation of locomotion.
    Buhl E; Roberts A; Soffe SR
    J Physiol; 2012 May; 590(10):2453-69. PubMed ID: 22393253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of premotor interneuron populations on the frequency of the spinal pattern generator for swimming in Xenopus embryos: a simulation study.
    Wolf E; Roberts A
    Eur J Neurosci; 1995 Apr; 7(4):671-8. PubMed ID: 7620618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles.
    Soffe SR; Zhao FY; Roberts A
    Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos.
    Perrins R; Roberts A
    J Neurophysiol; 1995 Mar; 73(3):1013-9. PubMed ID: 7608751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brainstem Steering of Locomotor Activity in the Newborn Rat.
    Oueghlani Z; Simonnet C; Cardoit L; Courtand G; Cazalets JR; Morin D; Juvin L; Barrière G
    J Neurosci; 2018 Aug; 38(35):7725-7740. PubMed ID: 30037828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.
    Ziskind-Conhaim L; Wu L; Wiesner EP
    J Neurophysiol; 2008 Oct; 100(4):2254-64. PubMed ID: 18667543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initiation of locomotion in adult zebrafish.
    Kyriakatos A; Mahmood R; Ausborn J; Porres CP; Büschges A; El Manira A
    J Neurosci; 2011 Jun; 31(23):8422-31. PubMed ID: 21653846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity.
    Hull MJ; Soffe SR; Willshaw DJ; Roberts A
    PLoS Comput Biol; 2015 May; 11(5):e1004240. PubMed ID: 25954930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms.
    Li WC
    J Neurosci; 2015 Jul; 35(27):9799-810. PubMed ID: 26156983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.