These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19221509)

  • 1. The Kir channel immunoglobulin domain is essential for Kir1.1 (ROMK) thermodynamic stability, trafficking and gating.
    Fallen K; Banerjee S; Sheehan J; Addison D; Lewis LM; Meiler J; Denton JS
    Channels (Austin); 2009; 3(1):57-68. PubMed ID: 19221509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of conserved glycines in pH gating of Kir1.1 (ROMK).
    Sackin H; Nanazashvili M; Palmer LG; Li H
    Biophys J; 2006 May; 90(10):3582-9. PubMed ID: 16533837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving the pH gate of the Kir1.1 inward rectifier channel.
    Nanazashvili M; Li H; Palmer LG; Walters DE; Sackin H
    Channels (Austin); 2007; 1(1):21-8. PubMed ID: 19170254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of inwardly rectifying (Kir) potassium channels: a comparative study.
    Haider S; Khalid S; Tucker SJ; Ashcroft FM; Sansom MS
    Biochemistry; 2007 Mar; 46(12):3643-52. PubMed ID: 17326663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel.
    Rapedius M; Haider S; Browne KF; Shang L; Sansom MS; Baukrowitz T; Tucker SJ
    EMBO Rep; 2006 Jun; 7(6):611-6. PubMed ID: 16641935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
    Haider S; Grottesi A; Hall BA; Ashcroft FM; Sansom MS
    Biophys J; 2005 May; 88(5):3310-20. PubMed ID: 15749783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating.
    Wang S; Borschel WF; Heyman S; Hsu P; Nichols CG
    J Biol Chem; 2017 Jun; 292(24):10087-10096. PubMed ID: 28446610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural locus of the pH gate in the Kir1.1 inward rectifier channel.
    Sackin H; Nanazashvili M; Palmer LG; Krambis M; Walters DE
    Biophys J; 2005 Apr; 88(4):2597-606. PubMed ID: 15653740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop.
    Rosenhouse-Dantsker A; Leal-Pinto E; Logothetis DE; Levitan I
    Channels (Austin); 2010; 4(1):63-6. PubMed ID: 19923917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of EAST/SeSAME syndrome mutations in Kir4.1 (KCNJ10).
    Sala-Rabanal M; Kucheryavykh LY; Skatchkov SN; Eaton MJ; Nichols CG
    J Biol Chem; 2010 Nov; 285(46):36040-8. PubMed ID: 20807765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the structural nature of the transition state in the Kir channel gating pathway.
    Fowler PW; Bollepalli MK; Rapedius M; Nematian-Ardestani E; Shang L; Sansom MS; Tucker SJ; Baukrowitz T
    Channels (Austin); 2014; 8(6):551-5. PubMed ID: 25483285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic defects in the hotspot of inwardly rectifying K(+) (Kir) channels and their metabolic consequences: a review.
    Pattnaik BR; Asuma MP; Spott R; Pillers DA
    Mol Genet Metab; 2012 Jan; 105(1):64-72. PubMed ID: 22079268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains.
    Zubcevic L; Bavro VN; Muniz JR; Schmidt MR; Wang S; De Zorzi R; Venien-Bryan C; Sansom MS; Nichols CG; Tucker SJ
    J Biol Chem; 2014 Jan; 289(1):143-51. PubMed ID: 24257749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome.
    O'Donnell BM; Mackie TD; Subramanya AR; Brodsky JL
    J Biol Chem; 2017 Aug; 292(31):12813-12827. PubMed ID: 28630040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway.
    Ma D; Tang XD; Rogers TB; Welling PA
    J Biol Chem; 2007 Feb; 282(8):5781-9. PubMed ID: 17166852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation linked with Bartter's syndrome locks Kir 1.1a (ROMK1) channels in a closed state.
    Flagg TP; Tate M; Merot J; Welling PA
    J Gen Physiol; 1999 Nov; 114(5):685-700. PubMed ID: 10532965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues at the outer mouth of Kir1.1 determine K-dependent gating.
    Sackin H; Nanazashvili M; Li H; Palmer LG; Yang L
    Biophys J; 2012 Jun; 102(12):2742-50. PubMed ID: 22735524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inwardly rectifying potassium channel Kir1.1: development of functional assays to identify and characterize channel inhibitors.
    Felix JP; Priest BT; Solly K; Bailey T; Brochu RM; Liu CJ; Kohler MG; Kiss L; Alonso-Galicia M; Tang H; Pasternak A; Kaczorowski GJ; Garcia ML
    Assay Drug Dev Technol; 2012 Oct; 10(5):417-31. PubMed ID: 22881347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.