These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
956 related articles for article (PubMed ID: 19221731)
1. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Hou J; Vemuri GN; Bao X; Olsson L Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731 [TBL] [Abstract][Full Text] [Related]
2. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
3. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
4. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
6. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. Matsushika A; Watanabe S; Kodaki T; Makino K; Sawayama S J Biosci Bioeng; 2008 Mar; 105(3):296-9. PubMed ID: 18397783 [TBL] [Abstract][Full Text] [Related]
7. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695 [TBL] [Abstract][Full Text] [Related]
8. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
9. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR; Kwee NR; Kim H; Jin YS FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [TBL] [Abstract][Full Text] [Related]
10. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
11. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054 [TBL] [Abstract][Full Text] [Related]
12. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol. Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926 [TBL] [Abstract][Full Text] [Related]
13. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related]
14. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361 [TBL] [Abstract][Full Text] [Related]
15. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]
16. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. Kuyper M; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955 [TBL] [Abstract][Full Text] [Related]
17. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK; Ho NW; Khan A; Sedlak M J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780 [TBL] [Abstract][Full Text] [Related]