BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19222214)

  • 1. The pH dependence of the 695 nm charge transfer band reveals the population of an intermediate state of the alkaline transition of ferricytochrome c at low ion concentrations.
    Verbaro D; Hagarman A; Soffer J; Schweitzer-Stenner R
    Biochemistry; 2009 Apr; 48(13):2990-6. PubMed ID: 19222214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes of horse heart ferricytochrome C induced by changes of ionic strength and anion binding.
    Shah R; Schweitzer-Stenner R
    Biochemistry; 2008 May; 47(18):5250-7. PubMed ID: 18407664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline conformational transition and gated electron transfer with a Lys 79 --> his variant of iso-1-cytochrome c.
    Bandi S; Baddam S; Bowler BE
    Biochemistry; 2007 Sep; 46(37):10643-54. PubMed ID: 17713929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent conformational changes of ferricytochrome c induced by electrode surface microstructure.
    Jiang X; Qu X; Zhang L; Zhang Z; Jiang J; Wang E; Dong S
    Biophys Chem; 2004 Aug; 110(3):203-11. PubMed ID: 15228956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational substates of horse heart cytochrome c exhibit different thermal unfolding of the heme cavity.
    Schweitzer-Stenner R; Shah R; Hagarman A; Dragomir I
    J Phys Chem B; 2007 Aug; 111(32):9603-7. PubMed ID: 17628093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The (not completely irreversible) population of a misfolded state of cytochrome c under folding conditions.
    Soffer JB; Fradkin E; Pandiscia LA; Schweitzer-Stenner R
    Biochemistry; 2013 Feb; 52(8):1397-408. PubMed ID: 23368898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational substates of ferricytochrome c revealed by combined optical absorption and electronic circular dichroism spectroscopy at cryogenic temperature.
    Spilotros A; Levantino M; Cupane A
    Biophys Chem; 2010 Mar; 147(1-2):8-12. PubMed ID: 20022687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy.
    Schweitzer-Stenner R
    J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c. Models for intermediates in the alkaline transition.
    Silkstone GG; Cooper CE; Svistunenko D; Wilson MT
    J Am Chem Soc; 2005 Jan; 127(1):92-9. PubMed ID: 15631458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR investigation of the alkaline-like conformational transition of horse heart cytochrome c in the presence of exogenous thiazole.
    Yao Y; Tang W
    Biophys Chem; 2003 Jun; 104(2):459-68. PubMed ID: 12878313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alkali molten globule state of horse ferricytochrome c: observation of cold denaturation.
    Kumar R; Prabhu NP; Rao DK; Bhuyan AK
    J Mol Biol; 2006 Dec; 364(3):483-95. PubMed ID: 17027030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt-induced formation of the A-state of ferricytochrome c--effect of the anion charge on protein structure.
    Sinibaldi F; Piro MC; Coletta M; Santucci R
    FEBS J; 2006 Dec; 273(23):5347-57. PubMed ID: 17059462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environment-controlled interchromophore charge transfer transitions in dipeptides probed by UV Absorption and electronic circular dichroism spectroscopy.
    Dragomir IC; Measey TJ; Hagarman AM; Schweitzer-Stenner R
    J Phys Chem B; 2006 Jul; 110(26):13235-41. PubMed ID: 16805637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the polyanion-induced molten globule-like state of cytochrome c.
    Sedlák E
    Biopolymers; 2007 Jun; 86(2):119-26. PubMed ID: 17330862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molten globule-like intermediate state detected in the thermal transition of cytochrome c under low salt concentration.
    Nakamura S; Baba T; Kidokoro S
    Biophys Chem; 2007 Apr; 127(1-2):103-12. PubMed ID: 17257735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy of transition for the individual alkaline conformers of yeast iso-1-cytochrome c.
    Battistuzzi G; Borsari M; De Rienzo F; Di Rocco G; Ranieri A; Sola M
    Biochemistry; 2007 Feb; 46(6):1694-702. PubMed ID: 17243773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational stability and dynamics of cytochrome c affect its alkaline isomerization.
    Tomásková N; Varhac R; Zoldák G; Oleksáková L; Sedláková D; Sedlák E
    J Biol Inorg Chem; 2007 Feb; 12(2):257-66. PubMed ID: 17120073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of the enthalpy change accompanying the native to molten-globule transition of cytochrome c by using isothermal acid-titration calorimetry.
    Nakamura S; Kidokoro S
    Biophys Chem; 2005 Feb; 113(2):161-8. PubMed ID: 15617823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural model for an alkaline form of ferricytochrome C.
    Assfalg M; Bertini I; Dolfi A; Turano P; Mauk AG; Rosell FI; Gray HB
    J Am Chem Soc; 2003 Mar; 125(10):2913-22. PubMed ID: 12617658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.