These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 19222247)
1. Using photoresponsive end-closing and end-opening reactions for the synthesis and disassembly of [2]rotaxanes: implications for dynamic covalent chemistry. Tokunaga Y; Akasaka K; Hashimoto N; Yamanaka S; Hisada K; Shimomura Y; Kakuchi S J Org Chem; 2009 Mar; 74(6):2374-9. PubMed ID: 19222247 [TBL] [Abstract][Full Text] [Related]
2. Dithienylethene-based rotaxanes: synthesis, characterization and properties. Hu F; Huang J; Cao M; Chen Z; Yang YW; Liu SH; Yin J Org Biomol Chem; 2014 Oct; 12(39):7712-20. PubMed ID: 25081736 [TBL] [Abstract][Full Text] [Related]
3. Photoresponsive formation of pseudo[2]rotaxane with cyclodextrin derivatives. Wang Z; Takashima Y; Yamaguchi H; Harada A Org Lett; 2011 Aug; 13(16):4356-9. PubMed ID: 21774508 [TBL] [Abstract][Full Text] [Related]
4. Using a threading-followed-by-swelling approach to synthesize [2]rotaxanes. Ko JL; Ueng SH; Chiu CW; Lai CC; Liu YH; Peng SM; Chiu SH Chemistry; 2010 Jun; 16(23):6950-60. PubMed ID: 20449856 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in the synthesis of ammonium-based rotaxanes. Thibeault D; Morin JF Molecules; 2010 May; 15(5):3709-30. PubMed ID: 20657509 [TBL] [Abstract][Full Text] [Related]
6. Solvent- and light-controlled unidirectional transit of a nonsymmetric molecular axle through a nonsymmetric molecular wheel. Arduini A; Bussolati R; Credi A; Monaco S; Secchi A; Silvi S; Venturi M Chemistry; 2012 Dec; 18(50):16203-13. PubMed ID: 23090856 [TBL] [Abstract][Full Text] [Related]
7. Revisiting the formation and tunable dissociation of a [2]pseudorotaxane formed by slippage approach. Leung KC; Lau KN; Wong WY Int J Mol Sci; 2015 Apr; 16(4):8254-65. PubMed ID: 25872145 [TBL] [Abstract][Full Text] [Related]
8. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes. Tachibana Y; Kawasaki H; Kihara N; Takata T J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495 [TBL] [Abstract][Full Text] [Related]
9. Construction of photoswitchable rotaxanes and catenanes containing dithienylethene fragments. Li Z; Han X; Chen H; Wu D; Hu F; Liu SH; Yin J Org Biomol Chem; 2015 Jul; 13(26):7313-22. PubMed ID: 26059864 [TBL] [Abstract][Full Text] [Related]
10. Four-State Molecular Shuttling of [2]Rotaxanes in Response to Acid/Base and Alkali-Metal Cation Stimuli. Kimura M; Mizuno T; Ueda M; Miyagawa S; Kawasaki T; Tokunaga Y Chem Asian J; 2017 Jun; 12(12):1381-1390. PubMed ID: 28409890 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the thermodynamically-controlled formation of diimide-based resin-attached rotaxanes by gel-phase HR MAS 1H NMR spectroscopy. Mullen KM; Johnstone KD; Webb M; Bampos N; Sanders JK; Gunter MJ Org Biomol Chem; 2008 Jan; 6(2):278-86. PubMed ID: 18174997 [TBL] [Abstract][Full Text] [Related]
12. Photoinduced Electron Transfer Involving a Naphthalimide Chromophore in Switchable and Flexible [2]Rotaxanes. Colasson B; Credi A; Ventura B Chemistry; 2020 Jan; 26(2):534-542. PubMed ID: 31638287 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen-bonding-mediated dynamic covalent synthesis of macrocycles and capsules: new receptors for aliphatic ammonium ions and the formation of pseudo[3]rotaxanes. Xu XN; Wang L; Wang GT; Lin JB; Li GY; Jiang XK; Li ZT Chemistry; 2009 Jun; 15(23):5763-74. PubMed ID: 19421981 [TBL] [Abstract][Full Text] [Related]
14. Insights into the Difference Between Rotaxane and Pseudorotaxane. Sun HL; Zhang HY; Dai Z; Han X; Liu Y Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389 [TBL] [Abstract][Full Text] [Related]
15. Coordination-driven self-assembly of cavity-cored multiple crown ether derivatives and poly[2]pseudorotaxanes. Ghosh K; Yang HB; Northrop BH; Lyndon MM; Zheng YR; Muddiman DC; Stang PJ J Am Chem Soc; 2008 Apr; 130(15):5320-34. PubMed ID: 18341280 [TBL] [Abstract][Full Text] [Related]
16. Effect of Component Mobility on the Properties of Macromolecular [2]Rotaxanes. Chen Z; Aoki D; Uchida S; Marubayashi H; Nojima S; Takata T Angew Chem Int Ed Engl; 2016 Feb; 55(8):2778-81. PubMed ID: 26806916 [TBL] [Abstract][Full Text] [Related]
17. Organometallic rotaxanes with a triazole group in the axle component and their behavior as ligands of PtII complexes. Yu G; Suzaki Y; Abe T; Osakada K Chem Asian J; 2012 Jan; 7(1):207-13. PubMed ID: 22034229 [TBL] [Abstract][Full Text] [Related]
18. Efficient production of [n]rotaxanes by using template-directed clipping reactions. Wu J; Leung KC; Stoddart JF Proc Natl Acad Sci U S A; 2007 Oct; 104(44):17266-71. PubMed ID: 17947382 [TBL] [Abstract][Full Text] [Related]
19. Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins. Oshikiri T; Takashima Y; Yamaguchi H; Harada A Chemistry; 2007; 13(25):7091-8. PubMed ID: 17563911 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and investigation of host-[2]rotaxanes that bind metal cations. Wang X; Zhu J; Smithrud DB J Org Chem; 2010 May; 75(10):3358-70. PubMed ID: 20411910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]