These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 19222257)

  • 1. From thermally activated to viscosity controlled fracture of biopolymer hydrogels.
    Baumberger T; Ronsin O
    J Chem Phys; 2009 Feb; 130(6):061102. PubMed ID: 19222257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels.
    Baumberger T; Ronsin O
    Biomacromolecules; 2010 Jun; 11(6):1571-8. PubMed ID: 20499914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel.
    Liang HF; Hong MH; Ho RM; Chung CK; Lin YH; Chen CH; Sung HW
    Biomacromolecules; 2004; 5(5):1917-25. PubMed ID: 15360306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ gelable glycation-resistant hydrogels composed of gelatin and oxidized alginate.
    Zhang H; Liao H; Chen W
    J Biomater Sci Polym Ed; 2010; 21(3):329-42. PubMed ID: 20178689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers.
    Cho SH; Lim SM; Han DK; Yuk SH; Im GI; Lee JH
    J Biomater Sci Polym Ed; 2009; 20(7-8):863-76. PubMed ID: 19454157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of a thermostable and biodegradable biopolymers using natural cross-linker.
    Mitra T; Sailakshmi G; Gnanamani A; Raja ST; Thiruselvi T; Gowri VM; Selvaraj NV; Ramesh G; Mandal AB
    Int J Biol Macromol; 2011 Mar; 48(2):276-85. PubMed ID: 21126533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking.
    Cellesi F; Tirelli N; Hubbell JA
    Biomaterials; 2004 Sep; 25(21):5115-24. PubMed ID: 15109835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules.
    Cellesi F; Weber W; Fussenegger M; Hubbell JA; Tirelli N
    Biotechnol Bioeng; 2004 Dec; 88(6):740-9. PubMed ID: 15532084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionically cross-linked carrageenan-alginate hydrogel beads.
    Mohamadnia Z; Zohuriaan-Mehr MJ; Kabiri K; Jamshidi A; Mobedi H
    J Biomater Sci Polym Ed; 2008; 19(1):47-59. PubMed ID: 18177553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties.
    Jeon O; Bouhadir KH; Mansour JM; Alsberg E
    Biomaterials; 2009 May; 30(14):2724-34. PubMed ID: 19201462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous calcium alginate-gelatin interpenetrated matrix and its biomineralization potential.
    Stancu IC; Dragusin DM; Vasile E; Trusca R; Antoniac I; Vasilescu DS
    J Mater Sci Mater Med; 2011 Mar; 22(3):451-60. PubMed ID: 21279673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel gel formation method, microstructure and mechanical properties of calcium polysaccharide gel films.
    Sriamornsak P; Kennedy RA
    Int J Pharm; 2006 Oct; 323(1-2):72-80. PubMed ID: 16814969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of vascular endothelial growth factor from alginate hydrogels nano-coated with polyelectrolyte multilayer films.
    Matsusaki M; Sakaguchi H; Serizawa T; Akashi M
    J Biomater Sci Polym Ed; 2007; 18(6):775-83. PubMed ID: 17623557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delivery of cisplatin from Pluronic co-polymer systems: liposome inclusion and alginate coupling.
    Fang JY; Hsu SH; Leu YL; Hu JW
    J Biomater Sci Polym Ed; 2009; 20(7-8):1031-47. PubMed ID: 19454167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin.
    Balakrishnan B; Mohanty M; Umashankar PR; Jayakrishnan A
    Biomaterials; 2005 Nov; 26(32):6335-42. PubMed ID: 15919113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic controlled synthesis of pH-responsive network alginate.
    Chan AW; Whitney RA; Neufeld RJ
    Biomacromolecules; 2008 Sep; 9(9):2536-45. PubMed ID: 18666793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive stress-strain response of covalently crosslinked oxidized-alginate/N-succinyl-chitosan hydrogels.
    Rogalsky AD; Kwon HJ; Lee-Sullivan P
    J Biomed Mater Res A; 2011 Dec; 99(3):367-75. PubMed ID: 22021184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removable colored coatings based on calcium alginate hydrogels.
    Kobaslija M; McQuade DT
    Biomacromolecules; 2006 Aug; 7(8):2357-61. PubMed ID: 16903682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.