BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19222378)

  • 1. A bayesian analysis strategy for cross-study translation of gene expression biomarkers.
    Lucas J; Carvalho C; West M
    Stat Appl Genet Mol Biol; 2009; 8(1):Article 11. PubMed ID: 19222378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-study projections of genomic biomarkers: an evaluation in cancer genomics.
    Lucas JE; Carvalho CM; Chen JL; Chi JT; West M
    PLoS One; 2009; 4(2):e4523. PubMed ID: 19225561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer.
    Tanioka M; Mott KR; Hollern DP; Fan C; Darr DB; Perou CM
    Genome Med; 2018 Nov; 10(1):86. PubMed ID: 30497520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MYC copy gain, chromosomal instability and PI3K activation as potential markers of unfavourable outcome in trastuzumab-treated patients with metastatic breast cancer.
    Gogas H; Kotoula V; Alexopoulou Z; Christodoulou C; Kostopoulos I; Bobos M; Raptou G; Charalambous E; Tsolaki E; Xanthakis I; Pentheroudakis G; Koutras A; Bafaloukos D; Papakostas P; Aravantinos G; Psyrri A; Petraki K; Kalogeras KT; Pectasides D; Fountzilas G
    J Transl Med; 2016 May; 14(1):136. PubMed ID: 27184134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer.
    Musgrove EA; Sergio CM; Loi S; Inman CK; Anderson LR; Alles MC; Pinese M; Caldon CE; Schütte J; Gardiner-Garden M; Ormandy CJ; McArthur G; Butt AJ; Sutherland RL
    PLoS One; 2008 Aug; 3(8):e2987. PubMed ID: 18714337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Array-based comparative genomic hybridization identifies CDK4 and FOXM1 alterations as independent predictors of survival in malignant peripheral nerve sheath tumor.
    Yu J; Deshmukh H; Payton JE; Dunham C; Scheithauer BW; Tihan T; Prayson RA; Guha A; Bridge JA; Ferner RE; Lindberg GM; Gutmann RJ; Emnett RJ; Salavaggione L; Gutmann DH; Nagarajan R; Watson MA; Perry A
    Clin Cancer Res; 2011 Apr; 17(7):1924-34. PubMed ID: 21325289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways.
    Shen Y; Rahman M; Piccolo SR; Gusenleitner D; El-Chaar NN; Cheng L; Monti S; Bild AH; Johnson WE
    Bioinformatics; 2015 Jun; 31(11):1745-53. PubMed ID: 25617415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients.
    Horlings HM; Lai C; Nuyten DS; Halfwerk H; Kristel P; van Beers E; Joosse SA; Klijn C; Nederlof PM; Reinders MJ; Wessels LF; van de Vijver MJ
    Clin Cancer Res; 2010 Jan; 16(2):651-63. PubMed ID: 20068109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data.
    Shen R; Ghosh D; Chinnaiyan AM
    BMC Genomics; 2004 Dec; 5(1):94. PubMed ID: 15598354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncogene protein co-expression. Value of Ha-ras, c-myc, c-fos, and p53 as prognostic discriminants for breast carcinoma.
    Bland KI; Konstadoulakis MM; Vezeridis MP; Wanebo HJ
    Ann Surg; 1995 Jun; 221(6):706-18; discussion 718-20. PubMed ID: 7794075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel 18-Marker Panel Predicting Clinical Outcome in Breast Cancer.
    Biermann J; Nemes S; Parris TZ; Engqvist H; Rönnerman EW; Forssell-Aronsson E; Steineck G; Karlsson P; Helou K
    Cancer Epidemiol Biomarkers Prev; 2017 Nov; 26(11):1619-1628. PubMed ID: 28877888
    [No Abstract]   [Full Text] [Related]  

  • 13. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms.
    Sørlie T; Wang Y; Xiao C; Johnsen H; Naume B; Samaha RR; Børresen-Dale AL
    BMC Genomics; 2006 May; 7():127. PubMed ID: 16729877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian unsupervised learning with multiple data types.
    Agius P; Ying Y; Campbell C
    Stat Appl Genet Mol Biol; 2009; 8():Article27. PubMed ID: 19572826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of the EGFR, HER2, c-MYC, and MET variations in colorectal cancer determined by three different measures: gene copy number gain, amplification status and the 2013 ASCO/CAP guideline criterion for HER2 testing of breast cancer.
    Kwak Y; Yun S; Nam SK; Seo AN; Lee KS; Shin E; Oh HK; Kim DW; Kang SB; Kim WH; Lee HS
    J Transl Med; 2017 Aug; 15(1):167. PubMed ID: 28764718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of Protein Translation and Extracellular Matrix Gene Sets with Breast Cancer Metastasis: Findings Uncovered on Analysis of Multiple Publicly Available Datasets Using Individual Patient Data Approach.
    Chowdhury N; Sapru S
    PLoS One; 2015; 10(6):e0129610. PubMed ID: 26080057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genomic hybridization-based oncogenetic tree model for genetic classification of breast cancer.
    Friedrich K; von Heydebreck A; Haroske G; Scheithauer J; Meyer W; Kunze KD; Baretton G
    Anal Quant Cytol Histol; 2009 Apr; 31(2):101-8. PubMed ID: 19402387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide screen identifies a novel prognostic signature for breast cancer survival.
    Mao XY; Lee MJ; Zhu J; Zhu C; Law SM; Snijders AM
    Oncotarget; 2017 Feb; 8(8):14003-14016. PubMed ID: 28122328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Bayesian networks for inferring cause-effect relations from gene expression profiles of cancer versus normal cells.
    Polanski A; Polanska J; Jarzab M; Wiench M; Jarzab B
    Math Biosci; 2007 Oct; 209(2):528-46. PubMed ID: 17467015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AN INTEGRATIVE ANALYSIS OF CANCER GENE EXPRESSION STUDIES USING BAYESIAN LATENT FACTOR MODELING.
    Merl D; Chen JL; Chi JT; West M
    Ann Appl Stat; 2009; 3(4):1675-1694. PubMed ID: 20953268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.