These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19222381)

  • 1. Survival analysis with high-dimensional covariates: an application in microarray studies.
    Engler D; Li Y
    Stat Appl Genet Mol Biol; 2009; 8(1):Article 14. PubMed ID: 19222381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
    Gui J; Li H
    Bioinformatics; 2005 Jul; 21(13):3001-8. PubMed ID: 15814556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization.
    Liang Y; Chai H; Liu XY; Xu ZB; Zhang H; Leung KS
    BMC Med Genomics; 2016 Mar; 9():11. PubMed ID: 26932592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited.
    Segal MR
    Biostatistics; 2006 Apr; 7(2):268-85. PubMed ID: 16284340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting method for nonlinear transformation models with censored survival data.
    Lu W; Li L
    Biostatistics; 2008 Oct; 9(4):658-67. PubMed ID: 18344565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability selection for lasso, ridge and elastic net implemented with AFT models.
    Khan MHR; Bhadra A; Howlader T
    Stat Appl Genet Mol Biol; 2019 Oct; 18(5):. PubMed ID: 31586968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kernel Cox regression models for linking gene expression profiles to censored survival data.
    Li H; Luan Y
    Pac Symp Biocomput; 2003; ():65-76. PubMed ID: 12603018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-dimensional additive hazards regression for oral squamous cell carcinoma using microarray data: a comparative study.
    Hamidi O; Tapak L; Jafarzadeh Kohneloo A; Sadeghifar M
    Biomed Res Int; 2014; 2014():393280. PubMed ID: 24982876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing risks data analysis with high-dimensional covariates: an application in bladder cancer.
    Tapak L; Saidijam M; Sadeghifar M; Poorolajal J; Mahjub H
    Genomics Proteomics Bioinformatics; 2015 Jun; 13(3):169-76. PubMed ID: 25907251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the prognostic value of survival models with application to gene expression signatures.
    Hielscher T; Zucknick M; Werft W; Benner A
    Stat Med; 2010 Mar; 29(7-8):818-29. PubMed ID: 20213714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependent ROC curves for the estimation of true prognostic capacity of microarray data.
    Foucher Y; Danger R
    Stat Appl Genet Mol Biol; 2012 Nov; 11(6):Article 1. PubMed ID: 23183763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel harmonic regularization approach for variable selection in Cox's proportional hazards model.
    Chu GJ; Liang Y; Wang JX
    Comput Math Methods Med; 2014; 2014():857398. PubMed ID: 25506389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable selection for censored data using Modified Correlation Adjusted coRrelation (MCAR) scores.
    Mimi A; Khan MHR
    Stat Med; 2021 Oct; 40(23):5046-5064. PubMed ID: 34155660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buckley-James boosting for survival analysis with high-dimensional biomarker data.
    Wang Z; Wang CY
    Stat Appl Genet Mol Biol; 2010; 9(1):Article24. PubMed ID: 20597850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kernel based methods for accelerated failure time model with ultra-high dimensional data.
    Liu Z; Chen D; Tan M; Jiang F; Gartenhaus RB
    BMC Bioinformatics; 2010 Dec; 11():606. PubMed ID: 21176134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of evaluation criteria for survival prediction from genomic data.
    Bøvelstad HM; Borgan O
    Biom J; 2011 Mar; 53(2):202-16. PubMed ID: 21308723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.
    Nguyen T; Khosravi A; Creighton D; Nahavandi S
    PLoS One; 2015; 10(3):e0120364. PubMed ID: 25823003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kernel mixture survival models for identifying cancer subtypes, predicting patient's cancer types and survival probabilities.
    Ando T; Imoto S; Miyano S
    Genome Inform; 2004; 15(2):201-10. PubMed ID: 15706506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cox survival analysis of microarray gene expression data using correlation principal component regression.
    Zhao Q; Sun J
    Stat Appl Genet Mol Biol; 2007; 6():Article16. PubMed ID: 17542778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.