These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [Blockade of the ion channels of the skeletal muscle acetylcholine receptor]. Danilov AF Eksp Klin Farmakol; 1998; 61(6):73-5. PubMed ID: 9929824 [TBL] [Abstract][Full Text] [Related]
4. [The action of non-depolarizing muscle relaxants on nerve terminal of motor endplate--relationship between run-down of endplate potentials and fading tension response]. Narimatsu E; Iwasaki H; Namiki A Masui; 1994 Oct; 43(10):1446-53. PubMed ID: 7815692 [TBL] [Abstract][Full Text] [Related]
5. Block of postjunctional muscle-type acetylcholine receptors in vivo causes train-of-four fade in mice. Nagashima M; Sasakawa T; Schaller SJ; Martyn JA Br J Anaesth; 2015 Jul; 115(1):122-7. PubMed ID: 25835024 [TBL] [Abstract][Full Text] [Related]
6. Applied pharmacology of common neuromuscular blocking agents in critical care. Prielipp RC; Coursin DB New Horiz; 1994 Feb; 2(1):34-47. PubMed ID: 7922428 [TBL] [Abstract][Full Text] [Related]
7. The undesirable effects of neuromuscular blocking drugs. Claudius C; Garvey LH; Viby-Mogensen J Anaesthesia; 2009 Mar; 64 Suppl 1():10-21. PubMed ID: 19222427 [TBL] [Abstract][Full Text] [Related]
8. Train-of-four and tetanic fade are not always a prejunctional phenomenon as evaluated by toxins having highly specific pre- and postjunctional actions. Nagashima M; Yasuhara S; Martyn JAJ Anesth Analg; 2013 May; 116(5):994-1000. PubMed ID: 23477960 [TBL] [Abstract][Full Text] [Related]
9. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Bowman WC Anesth Analg; 1980 Dec; 59(12):935-43. PubMed ID: 6255826 [No Abstract] [Full Text] [Related]
10. Neurophysiology of the neuromuscular junction: overview. Ruff RL Ann N Y Acad Sci; 2003 Sep; 998():1-10. PubMed ID: 14592857 [TBL] [Abstract][Full Text] [Related]
11. Desensitization of mutant acetylcholine receptors in transgenic mice reduces the amplitude of neuromuscular synaptic currents. Bhattacharyya BJ; Day JW; Gundeck JE; Leonard S; Wollmann RL; Gomez CM Synapse; 1997 Dec; 27(4):367-77. PubMed ID: 9372559 [TBL] [Abstract][Full Text] [Related]
12. [Basic and clinical importance of nicotinic acetylcholine receptors]. Suzuki T Masui; 2008 Jul; 57(7):813-8. PubMed ID: 18649634 [TBL] [Abstract][Full Text] [Related]
13. Analysis of synaptic transmission in the neuromuscular junction using a continuum finite element model. Smart JL; McCammon JA Biophys J; 1998 Oct; 75(4):1679-88. PubMed ID: 9746510 [TBL] [Abstract][Full Text] [Related]
15. Resistance to D-tubocurarine of the rat diaphragm as compared to a limb muscle: influence of quantal transmitter release and nicotinic acetylcholine receptors. Nguyen-Huu T; Molgó J; Servent D; Duvaldestin P Anesthesiology; 2009 May; 110(5):1011-5. PubMed ID: 19352164 [TBL] [Abstract][Full Text] [Related]
16. Building a bilayer model of the neuromuscular synapse. Woodbury DJ Cell Biochem Biophys; 1999; 30(3):303-29. PubMed ID: 10403054 [TBL] [Abstract][Full Text] [Related]
17. Functional sites of the nicotinic acetylcholine receptor. Karlin A; DiPaola M; Kao P; Wang L; Czajkowski C; Chak A P R Health Sci J; 1988 Aug; 7(2):75. PubMed ID: 2847218 [No Abstract] [Full Text] [Related]
18. Natural probes for cholinergic sites: L-bebeerine actions on the neuromuscular transmission, the nicotinic receptor/ionic channel complex, and contraction of skeletal muscles. Souccar C; Borrás MR; Corrado AP; Lima-Landman MT; Lapa AJ Acta Physiol Pharmacol Ther Latinoam; 1999; 49(4):268-78. PubMed ID: 10797870 [TBL] [Abstract][Full Text] [Related]