These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 19222562)
21. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury. Prosser-Loose EJ; Hassan A; Mitchell GS; Muir GD J Neurotrauma; 2015 Sep; 32(18):1403-12. PubMed ID: 25664481 [TBL] [Abstract][Full Text] [Related]
22. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury. Arnold BM; Toosi BM; Caine S; Mitchell GS; Muir GD Exp Neurol; 2021 Jun; 340():113672. PubMed ID: 33652030 [TBL] [Abstract][Full Text] [Related]
23. Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury. Anderson KD; Sharp KG; Hofstadter M; Irvine KA; Murray M; Steward O Exp Neurol; 2009 Nov; 220(1):23-33. PubMed ID: 19733168 [TBL] [Abstract][Full Text] [Related]
24. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex. Okabe N; Himi N; Maruyama-Nakamura E; Hayashi N; Narita K; Miyamoto O PLoS One; 2017; 12(11):e0187413. PubMed ID: 29095902 [TBL] [Abstract][Full Text] [Related]
25. Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Batty NJ; Torres-Espín A; Vavrek R; Raposo P; Fouad K Exp Neurol; 2020 Feb; 324():113136. PubMed ID: 31786212 [TBL] [Abstract][Full Text] [Related]
26. Enhancing Spinal Plasticity Amplifies the Benefits of Rehabilitative Training and Improves Recovery from Stroke. Wiersma AM; Fouad K; Winship IR J Neurosci; 2017 Nov; 37(45):10983-10997. PubMed ID: 29025926 [TBL] [Abstract][Full Text] [Related]
27. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. Maier IC; Baumann K; Thallmair M; Weinmann O; Scholl J; Schwab ME J Neurosci; 2008 Sep; 28(38):9386-403. PubMed ID: 18799672 [TBL] [Abstract][Full Text] [Related]
28. Bilateral movement training promotes axonal remodeling of the corticospinal tract and recovery of motor function following traumatic brain injury in mice. Nakagawa H; Ueno M; Itokazu T; Yamashita T Cell Death Dis; 2013 Mar; 4(3):e534. PubMed ID: 23470541 [TBL] [Abstract][Full Text] [Related]
29. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918 [TBL] [Abstract][Full Text] [Related]
30. Inhibiting cortical protein kinase A in spinal cord injured rats enhances efficacy of rehabilitative training. Wei D; Hurd C; Galleguillos D; Singh J; Fenrich KK; Webber CA; Sipione S; Fouad K Exp Neurol; 2016 Sep; 283(Pt A):365-74. PubMed ID: 27401133 [TBL] [Abstract][Full Text] [Related]
31. Training following unilateral cervical spinal cord injury in rats affects the contralesional forelimb. Weishaupt N; Vavrek R; Fouad K Neurosci Lett; 2013 Feb; 539():77-81. PubMed ID: 23384567 [TBL] [Abstract][Full Text] [Related]
32. Rehabilitative training following unilateral pyramidotomy in adult rats improves forelimb function in a non-task-specific way. Starkey ML; Bleul C; Maier IC; Schwab ME Exp Neurol; 2011 Nov; 232(1):81-9. PubMed ID: 21867701 [TBL] [Abstract][Full Text] [Related]
33. Self-directed rehabilitation training intensity thresholds for efficient recovery of skilled forelimb function in rats with cervical spinal cord injury. Fenrich KK; Hallworth BW; Vavrek R; Raposo PJF; Misiaszek JE; Bennett DJ; Fouad K; Torres-Espin A Exp Neurol; 2021 May; 339():113543. PubMed ID: 33290776 [TBL] [Abstract][Full Text] [Related]
34. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury. Song W; Amer A; Ryan D; Martin JH Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732 [TBL] [Abstract][Full Text] [Related]
35. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression. Hassan A; Arnold BM; Caine S; Toosi BM; Verge VMK; Muir GD PLoS One; 2018; 13(5):e0197486. PubMed ID: 29775479 [TBL] [Abstract][Full Text] [Related]
36. Sensorimotor training promotes functional recovery and somatosensory cortical map reactivation following cervical spinal cord injury. Martinez M; Brezun JM; Zennou-Azogui Y; Baril N; Xerri C Eur J Neurosci; 2009 Dec; 30(12):2356-67. PubMed ID: 20092578 [TBL] [Abstract][Full Text] [Related]
37. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Kanagal SG; Muir GD Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552 [TBL] [Abstract][Full Text] [Related]
38. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523 [TBL] [Abstract][Full Text] [Related]
39. Independent replication of motor cortex and cervical spinal cord electrical stimulation to promote forelimb motor function after spinal cord injury in rats. Yang Q; Ramamurthy A; Lall S; Santos J; Ratnadurai-Giridharan S; Lopane M; Zareen N; Alexander H; Ryan D; Martin JH; Carmel JB Exp Neurol; 2019 Oct; 320():112962. PubMed ID: 31125548 [TBL] [Abstract][Full Text] [Related]
40. Challenges of animal models in SCI research: Effects of pre-injury task-specific training in adult rats before lesion. May Z; Fouad K; Shum-Siu A; Magnuson DSK Behav Brain Res; 2015 Sep; 291():26-35. PubMed ID: 25975172 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]