These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19222792)

  • 1. Surface charge changes upon formation of the signaling state in visual rhodopsin.
    Möller M; Alexiev U
    Photochem Photobiol; 2009; 85(2):501-8. PubMed ID: 19222792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1999 Aug; 38(34):11103-14. PubMed ID: 10460166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of environmental changes at the cytoplasmic surface of light-activated bacteriorhodopsin and visual rhodopsin: sequence of spectrally silent steps.
    Kim TY; Moeller M; Winkler K; Kirchberg K; Alexiev U
    Photochem Photobiol; 2009; 85(2):570-7. PubMed ID: 19222795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of rhodopsin and the metarhodopsin I photointermediate.
    Schertler GF
    Curr Opin Struct Biol; 2005 Aug; 15(4):408-15. PubMed ID: 16043340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK; Parkes JH; Liebman PA
    Biochemistry; 1998 Aug; 37(33):11393-8. PubMed ID: 9708973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predisposition of the dark state of rhodopsin to functional changes in structure.
    Isin B; Rader AJ; Dhiman HK; Klein-Seetharaman J; Bahar I
    Proteins; 2006 Dec; 65(4):970-83. PubMed ID: 17009319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment.
    Periole X; Ceruso MA; Mehler EL
    Biochemistry; 2004 Jun; 43(22):6858-64. PubMed ID: 15170322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting molecular interactions that stabilize native bovine rhodopsin.
    Tanuj Sapra K; Park PS; Filipek S; Engel A; Müller DJ; Palczewski K
    J Mol Biol; 2006 Apr; 358(1):255-69. PubMed ID: 16519899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH; Gibson SK; Liebman PA
    Biochemistry; 1999 May; 38(21):6862-78. PubMed ID: 10346908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin.
    Lehmann N; Alexiev U; Fahmy K
    J Mol Biol; 2007 Mar; 366(4):1129-41. PubMed ID: 17196983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation.
    Mitchell DC; Litman BJ
    Biochemistry; 1999 Jun; 38(24):7617-23. PubMed ID: 10387000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of bovine rhodopsin in a trigonal crystal form.
    Li J; Edwards PC; Burghammer M; Villa C; Schertler GF
    J Mol Biol; 2004 Nov; 343(5):1409-38. PubMed ID: 15491621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S; Mielke T; Heyn MP
    Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR.
    Klein-Seetharaman J; Yanamala NV; Javeed F; Reeves PJ; Getmanova EV; Loewen MC; Schwalbe H; Khorana HG
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3409-13. PubMed ID: 14990789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin.
    Crocker E; Eilers M; Ahuja S; Hornak V; Hirshfeld A; Sheves M; Smith SO
    J Mol Biol; 2006 Mar; 357(1):163-72. PubMed ID: 16414074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional properties of metarhodopsin III: recent spectroscopic studies on deactivation pathways of rhodopsin.
    Bartl FJ; Vogel R
    Phys Chem Chem Phys; 2007 Apr; 9(14):1648-58. PubMed ID: 17396175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.