These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19222855)

  • 41. XenDB: full length cDNA prediction and cross species mapping in Xenopus laevis.
    Sczyrba A; Beckstette M; Brivanlou AH; Giegerich R; Altmann CR
    BMC Genomics; 2005 Sep; 6():123. PubMed ID: 16162280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative genomics on SOX2 orthologs.
    Katoh Y; Katoh M
    Oncol Rep; 2005 Sep; 14(3):797-800. PubMed ID: 16077994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ARNT gene multiplicity in amphibians: characterization of ARNT2 from the frog Xenopus laevis.
    Rowatt AJ; DePowell JJ; Powell WH
    J Exp Zool B Mol Dev Evol; 2003 Dec; 300(1):48-57. PubMed ID: 14984034
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus.
    Massé K; Eason R; Bhamra S; Dale N; Jones EA
    Genomics; 2006 Mar; 87(3):366-81. PubMed ID: 16380227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial and temporal expression profiles suggest the involvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis.
    Hasebe T; Hartman R; Matsuda H; Shi YB
    Cell Tissue Res; 2006 Apr; 324(1):105-16. PubMed ID: 16418836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ACE2 orthologues in non-mammalian vertebrates (Danio, Gallus, Fugu, Tetraodon and Xenopus).
    Chou CF; Loh CB; Foo YK; Shen S; Fielding BC; Tan TH; Khan S; Wang Y; Lim SG; Hong W; Tan YJ; Fu J
    Gene; 2006 Aug; 377():46-55. PubMed ID: 16781089
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension.
    Lambert CA; Colige AC; Munaut C; Lapière CM; Nusgens BV
    Matrix Biol; 2001 Nov; 20(7):397-408. PubMed ID: 11691580
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elephant shark sequence reveals unique insights into the evolutionary history of vertebrate genes: A comparative analysis of the protocadherin cluster.
    Yu WP; Rajasegaran V; Yew K; Loh WL; Tay BH; Amemiya CT; Brenner S; Venkatesh B
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3819-24. PubMed ID: 18319338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Duplication and MHC linkage of the CTX family of genes in Xenopus and in mammals.
    Du Pasquier L; Courtet M; Chrétien I
    Eur J Immunol; 1999 May; 29(5):1729-39. PubMed ID: 10359128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and expression of an atypical isoform of metallothionein in the African clawed frog Xenopus laevis.
    Scudiero R; Tussellino M; Carotenuto R
    C R Biol; 2015 May; 338(5):314-20. PubMed ID: 25882350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages.
    Heller N; Brändli AW
    Dev Genet; 1999; 24(3-4):208-19. PubMed ID: 10322629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From expression cloning to gene modeling: the development of Xenopus gene sequence resources.
    Gilchrist MJ
    Genesis; 2012 Mar; 50(3):143-54. PubMed ID: 22344767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three matrix metalloproteinases are required in vivo for macrophage migration during embryonic development.
    Tomlinson ML; Garcia-Morales C; Abu-Elmagd M; Wheeler GN
    Mech Dev; 2008; 125(11-12):1059-70. PubMed ID: 18684398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of ABCA4 proteins in vertebrates.
    Yatsenko AN; Wiszniewski W; Zaremba CM; Jamrich M; Lupski JR
    J Mol Evol; 2005 Jan; 60(1):72-80. PubMed ID: 15696369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: a new mechanism for creating simple sequence repeats.
    Hikosaka A; Kawahara A
    J Mol Evol; 2004 Dec; 59(6):738-46. PubMed ID: 15599506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genomic organization of the immunoglobulin light chain gene loci in Xenopus tropicalis: evolutionary implications.
    Qin T; Ren L; Hu X; Guo Y; Fei J; Zhu Q; Butler JE; Wu C; Li N; Hammarstrom L; Zhao Y
    Dev Comp Immunol; 2008; 32(2):156-65. PubMed ID: 17624429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low-molecular-weight heat shock proteins in a desert fish (Poeciliopsis lucida): homologs of human Hsp27 and Xenopus Hsp30.
    Norris CE; Brown MA; Hickey E; Weber LA; Hightower LE
    Mol Biol Evol; 1997 Oct; 14(10):1050-61. PubMed ID: 9335145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ancestral organization of the MHC revealed in the amphibian Xenopus.
    Ohta Y; Goetz W; Hossain MZ; Nonaka M; Flajnik MF
    J Immunol; 2006 Mar; 176(6):3674-85. PubMed ID: 16517736
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models.
    Fanjul-Fernández M; Folgueras AR; Cabrera S; López-Otín C
    Biochim Biophys Acta; 2010 Jan; 1803(1):3-19. PubMed ID: 19631700
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolution of the Xenopus piggyBac transposon family TxpB: domesticated and untamed strategies of transposon subfamilies.
    Hikosaka A; Kobayashi T; Saito Y; Kawahara A
    Mol Biol Evol; 2007 Dec; 24(12):2648-56. PubMed ID: 17934208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.