These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 19223001)
1. Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. Prabhakar V; Löttgert T; Gigolashvili T; Bell K; Flügge UI; Häusler RE FEBS Lett; 2009 Mar; 583(6):983-91. PubMed ID: 19223001 [TBL] [Abstract][Full Text] [Related]
2. Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Prabhakar V; Löttgert T; Geimer S; Dörmann P; Krüger S; Vijayakumar V; Schreiber L; Göbel C; Feussner K; Feussner I; Marin K; Staehr P; Bell K; Flügge UI; Häusler RE Plant Cell; 2010 Aug; 22(8):2594-617. PubMed ID: 20798327 [TBL] [Abstract][Full Text] [Related]
3. Plastid DNA polymerases from higher plants, Arabidopsis thaliana. Mori Y; Kimura S; Saotome A; Kasai N; Sakaguchi N; Uchiyama Y; Ishibashi T; Yamamoto T; Chiku H; Sakaguchi K Biochem Biophys Res Commun; 2005 Aug; 334(1):43-50. PubMed ID: 15993837 [TBL] [Abstract][Full Text] [Related]
4. Deletion of core components of the plastid protein import machinery causes differential arrest of embryo development in Arabidopsis thaliana. Hust B; Gutensohn M Plant Biol (Stuttg); 2006 Jan; 8(1):18-30. PubMed ID: 16435266 [TBL] [Abstract][Full Text] [Related]
5. Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana. Chen Y; Asano T; Fujiwara MT; Yoshida S; Machida Y; Yoshioka Y Plant Cell Physiol; 2009 May; 50(5):956-69. PubMed ID: 19318374 [TBL] [Abstract][Full Text] [Related]
6. Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Enami K; Ichikawa M; Uemura T; Kutsuna N; Hasezawa S; Nakagawa T; Nakano A; Sato MH Plant Cell Physiol; 2009 Feb; 50(2):280-9. PubMed ID: 19098073 [TBL] [Abstract][Full Text] [Related]
7. Plastidial glycolysis in developing Arabidopsis embryos. Andriotis VM; Kruger NJ; Pike MJ; Smith AM New Phytol; 2010 Feb; 185(3):649-62. PubMed ID: 20002588 [TBL] [Abstract][Full Text] [Related]
8. Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis--AtPPT1 may be involved in the provision of signals for correct mesophyll development. Knappe S; Löttgert T; Schneider A; Voll L; Flügge UI; Fischer K Plant J; 2003 Nov; 36(3):411-20. PubMed ID: 14617097 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development. Xiong Y; DeFraia C; Williams D; Zhang X; Mou Z Plant Cell Physiol; 2009 Jul; 50(7):1277-91. PubMed ID: 19457984 [TBL] [Abstract][Full Text] [Related]
11. Analysis of plastid number, size, and distribution in Arabidopsis plants by light and fluorescence microscopy. Pyke K Methods Mol Biol; 2011; 774():19-32. PubMed ID: 21822830 [TBL] [Abstract][Full Text] [Related]
12. Solute transporters as connecting elements between cytosol and plastid stroma. Weber AP Curr Opin Plant Biol; 2004 Jun; 7(3):247-53. PubMed ID: 15134744 [TBL] [Abstract][Full Text] [Related]
13. Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana. Kojo KH; Fujiwara MT; Itoh RD Biosci Biotechnol Biochem; 2009 Dec; 73(12):2632-9. PubMed ID: 19966487 [TBL] [Abstract][Full Text] [Related]
14. Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division. Tang LY; Nagata N; Matsushima R; Chen Y; Yoshioka Y; Sakamoto W Plant Cell Physiol; 2009 Apr; 50(4):904-8. PubMed ID: 19282372 [TBL] [Abstract][Full Text] [Related]
15. Cloning, expression and characterization of an extracellular enolase from Leuconostoc mesenteroides. Lee JH; Kang HK; Moon YH; Cho DL; Kim D; Choe JY; Honzatko R; Robyt JF FEMS Microbiol Lett; 2006 Jun; 259(2):240-8. PubMed ID: 16734786 [TBL] [Abstract][Full Text] [Related]
16. Chemical induction of rapid and reversible plastid filamentation in Arabidopsis thaliana roots. Itoh RD; Yamasaki H; Septiana A; Yoshida S; Fujiwara MT Physiol Plant; 2010 Jun; 139(2):144-58. PubMed ID: 20088905 [TBL] [Abstract][Full Text] [Related]
17. The plastidial MEP pathway: unified nomenclature and resources. Phillips MA; León P; Boronat A; Rodríguez-Concepción M Trends Plant Sci; 2008 Dec; 13(12):619-23. PubMed ID: 18948055 [TBL] [Abstract][Full Text] [Related]
19. The role of transporters in supplying energy to plant plastids. Flügge UI; Häusler RE; Ludewig F; Gierth M J Exp Bot; 2011 Apr; 62(7):2381-92. PubMed ID: 21511915 [TBL] [Abstract][Full Text] [Related]
20. Arabidopsis AtIscA-I is affected by deficiency of Fe-S cluster biosynthetic scaffold AtCnfU-V. Yabe T; Nakai M Biochem Biophys Res Commun; 2006 Feb; 340(4):1047-52. PubMed ID: 16403446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]