BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 19223166)

  • 1. Aqueous batch rebinding and selectivity studies on sucrose imprinted polymers.
    Kirk C; Jensen M; Kjaer CN; Smedskjaer MM; Larsen KL; Wimmer R; Yu D
    Biosens Bioelectron; 2009 Nov; 25(3):623-8. PubMed ID: 19223166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalently galactose imprinted polymer for the recognition of different saccharides.
    Okutucu B; Onal S; Telefoncu A
    Talanta; 2009 May; 78(3):1190-3. PubMed ID: 19269492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte.
    Curcio P; Zandanel C; Wagner A; Mioskowski C; Baati R
    Macromol Biosci; 2009 Jun; 9(6):596-604. PubMed ID: 19434676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Via zinc(II) protoporphyrin to the synthesis of poly(ZnPP-MAA-EGDMA) for the imprinting and selective binding of bilirubin.
    Chou SK; Syu MJ
    Biomaterials; 2009 Mar; 30(7):1255-62. PubMed ID: 19100614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of monomer-template complexation: an explanation for molecularly imprinted polymer recognition site heterogeneity.
    Karlsson BC; O'Mahony J; Karlsson JG; Bengtsson H; Eriksson LA; Nicholls IA
    J Am Chem Soc; 2009 Sep; 131(37):13297-304. PubMed ID: 19708659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of molecular imprinted polymers compatible with aqueous environment.
    Piletska EV; Guerreiro AR; Romero-Guerra M; Chianella I; Turner AP; Piletsky SA
    Anal Chim Acta; 2008 Jan; 607(1):54-60. PubMed ID: 18155410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly imprinted polymers for histamine recognition in aqueous environment.
    Trikka FA; Yoshimatsu K; Ye L; Kyriakidis DA
    Amino Acids; 2012 Nov; 43(5):2113-24. PubMed ID: 22526245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric constants are not enough: principal component analysis of the influence of solvent properties on molecularly imprinted polymer-ligand rebinding.
    Rosengren AM; Golker K; Karlsson JG; Nicholls IA
    Biosens Bioelectron; 2009 Nov; 25(3):553-7. PubMed ID: 19646857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration dependent atrazine-atrazine complex formation promotes selectivity in atrazine imprinted polymers.
    Lavignac N; Brain KR; Allender CJ
    Biosens Bioelectron; 2006 Jul; 22(1):138-44. PubMed ID: 16690310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.
    Matsui J; Minamimura N; Nishimoto K; Tamaki K; Sugimoto N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 May; 804(1):223-9. PubMed ID: 15093176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.
    Yañez F; Chianella I; Piletsky SA; Concheiro A; Alvarez-Lorenzo C
    Anal Chim Acta; 2010 Feb; 659(1-2):178-85. PubMed ID: 20103122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing of MIP based QCM sensor having thymine recognition sites based on biomimicking DNA approach.
    Diltemiz SE; Hür D; Ersöz A; Denizli A; Say R
    Biosens Bioelectron; 2009 Nov; 25(3):599-603. PubMed ID: 19250816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of molecularly imprinted polymers for diphenylamine sensing.
    Granado VL; Rudnitskaya A; Oliveira JA; Gomes MT
    Talanta; 2012 May; 94():133-9. PubMed ID: 22608425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the limits of molecular imprinting: strategies with a template of limited size and functionality.
    Petcu M; Karlsson JG; Whitcombe MJ; Nicholls IA
    J Mol Recognit; 2009; 22(1):18-25. PubMed ID: 18802930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Batch and column separation characteristics of copper-imprinted porous polymer micro-beads synthesized by a direct imprinting method.
    Hoai NT; Yoo DK; Kim D
    J Hazard Mater; 2010 Jan; 173(1-3):462-7. PubMed ID: 19748733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the molecularly imprinted polymers with methyl-testosterone as the template.
    Yang M; Gu W; Sun L; Zhang F; Ling Y; Chu X; Wang D
    Talanta; 2010 Apr; 81(1-2):156-61. PubMed ID: 20188902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding site characteristics of 17beta-estradiol imprinted polymers.
    Wei S; Mizaikoff B
    Biosens Bioelectron; 2007 Sep; 23(2):201-9. PubMed ID: 17540554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of molecularly imprinted polymers as tailored templates for the solid-state [2+2] photodimerization.
    Wu X; Shimizu KD
    Biosens Bioelectron; 2009 Nov; 25(3):640-6. PubMed ID: 19269158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An innovative approach to molecularly imprinted capillaries for polar templates by grafting polymerization.
    Giovannoli C; Passini C; Baravalle P; Anfossi L; Giraudi G; Baggiani C
    J Mol Recognit; 2012 Jun; 25(6):377-82. PubMed ID: 22641536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers.
    Wu X; Goswami K; Shimizu KD
    J Mol Recognit; 2008; 21(6):410-8. PubMed ID: 18698665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.