These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19223506)

  • 1. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction.
    Cao Y; Tsien CI; Sundgren PC; Nagesh V; Normolle D; Buchtel H; Junck L; Lawrence TS
    Clin Cancer Res; 2009 Mar; 15(5):1747-54. PubMed ID: 19223506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Radiation-Induced Hippocampal Vascular Injury Surrogate Marker Predicts Late Neurocognitive Dysfunction.
    Farjam R; Pramanik P; Aryal MP; Srinivasan A; Chapman CH; Tsien CI; Lawrence TS; Cao Y
    Int J Radiat Oncol Biol Phys; 2015 Nov; 93(4):908-15. PubMed ID: 26530761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy.
    Cao Y; Tsien CI; Shen Z; Tatro DS; Ten Haken R; Kessler ML; Chenevert TL; Lawrence TS
    J Clin Oncol; 2005 Jun; 23(18):4127-36. PubMed ID: 15961760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion tensor imaging of normal-appearing white matter as biomarker for radiation-induced late delayed cognitive decline.
    Chapman CH; Nagesh V; Sundgren PC; Buchtel H; Chenevert TL; Junck L; Lawrence TS; Tsien CI; Cao Y
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):2033-40. PubMed ID: 21570218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose-dependent effects of radiation therapy on cerebral blood flow, metabolism, and neurocognitive dysfunction.
    Hahn CA; Zhou SM; Raynor R; Tisch A; Light K; Shafman T; Wong T; Kirkpatrick J; Turkington T; Hollis D; Marks LB
    Int J Radiat Oncol Biol Phys; 2009 Mar; 73(4):1082-7. PubMed ID: 18755558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging-based tumour perfusion parameters are biomarkers predicting response after radiation to brain metastases.
    Jakubovic R; Sahgal A; Soliman H; Milwid R; Zhang L; Eilaghi A; Aviv RI
    Clin Oncol (R Coll Radiol); 2014 Nov; 26(11):704-12. PubMed ID: 25023291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion tensor imaging predicts cognitive function change following partial brain radiotherapy for low-grade and benign tumors.
    Chapman CH; Zhu T; Nazem-Zadeh M; Tao Y; Buchtel HA; Tsien CI; Lawrence TS; Cao Y
    Radiother Oncol; 2016 Aug; 120(2):234-40. PubMed ID: 27418525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing neurocognitive outcomes in young patients with benign and low-grade brain tumors treated with stereotactic conformal radiotherapy.
    Jalali R; Mallick I; Dutta D; Goswami S; Gupta T; Munshi A; Deshpande D; Sarin R
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(4):974-9. PubMed ID: 19864079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up.
    Douw L; Klein M; Fagel SS; van den Heuvel J; Taphoorn MJ; Aaronson NK; Postma TJ; Vandertop WP; Mooij JJ; Boerman RH; Beute GN; Sluimer JD; Slotman BJ; Reijneveld JC; Heimans JJ
    Lancet Neurol; 2009 Sep; 8(9):810-8. PubMed ID: 19665931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiotherapeutic effects on brain function: double dissociation of memory systems.
    Armstrong CL; Corn BW; Ruffer JE; Pruitt AA; Mollman JE; Phillips PC
    Neuropsychiatry Neuropsychol Behav Neurol; 2000 Apr; 13(2):101-11. PubMed ID: 10780628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early Detection of Radiation-Induced Injury and Prediction of Cognitive Deficit by MRS Metabolites in Radiotherapy of Low-Grade Glioma.
    Alirezaei Z; Amouheidari A; Hassanpour M; Davanian F; Iraji S; Shokrani P; Nazem-Zadeh MR
    Biomed Res Int; 2021; 2021():6616992. PubMed ID: 34258272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-Brain Barrier Disruption After Cardiopulmonary Bypass: Diagnosis and Correlation to Cognition.
    Abrahamov D; Levran O; Naparstek S; Refaeli Y; Kaptson S; Abu Salah M; Ishai Y; Sahar G
    Ann Thorac Surg; 2017 Jul; 104(1):161-169. PubMed ID: 28193536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model.
    Yang C; Lee DH; Mangraviti A; Su L; Zhang K; Zhang Y; Zhang B; Li W; Tyler B; Wong J; Wang KK; Velarde E; Zhou J; Ding K
    Med Phys; 2015 Aug; 42(8):4762-72. PubMed ID: 26233204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin-labeled, dynamic susceptibility contrast enhanced MRI, and FDG-PET imaging.
    Ozsunar Y; Mullins ME; Kwong K; Hochberg FH; Ament C; Schaefer PW; Gonzalez RG; Lev MH
    Acad Radiol; 2010 Mar; 17(3):282-90. PubMed ID: 20060750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence.
    Fuss M; Wenz F; Scholdei R; Essig M; Debus J; Knopp MV; Wannenmacher M
    Int J Radiat Oncol Biol Phys; 2000 Aug; 48(1):53-8. PubMed ID: 10924971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation between radiation-induced brain injury and glioma recurrence using 3D pCASL and dynamic susceptibility contrast-enhanced perfusion-weighted imaging.
    Wang YL; Chen S; Xiao HF; Li Y; Wang Y; Liu G; Lou X; Ma L
    Radiother Oncol; 2018 Oct; 129(1):68-74. PubMed ID: 29398151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prospective study of cerebral, frontal lobe, and temporal lobe volumes and neuropsychological performance in children with primary brain tumors treated with cranial radiation.
    Agbahiwe H; Rashid A; Horska A; Mahone EM; Lin D; McNutt T; Cohen K; Redmond K; Wharam M; Terezakis S
    Cancer; 2017 Jan; 123(1):161-168. PubMed ID: 27571577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences.
    Pospisil P; Kazda T; Bulik M; Dobiaskova M; Burkon P; Hynkova L; Slampa P; Jancalek R
    Radiat Oncol; 2015 Oct; 10():211. PubMed ID: 26474857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phases.
    Lee MC; Cha S; Chang SM; Nelson SJ
    J Magn Reson Imaging; 2005 Jun; 21(6):683-93. PubMed ID: 15906330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging biomarker dynamics in an intracranial murine glioma study of radiation and antiangiogenic therapy.
    Chung C; Jalali S; Foltz W; Burrell K; Wildgoose P; Lindsay P; Graves C; Camphausen K; Milosevic M; Jaffray D; Zadeh G; Ménard C
    Int J Radiat Oncol Biol Phys; 2013 Mar; 85(3):805-12. PubMed ID: 22929856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.