These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 19223582)
1. Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Atkuri KR; Cowan TM; Kwan T; Ng A; Herzenberg LA; Herzenberg LA; Enns GM Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3941-5. PubMed ID: 19223582 [TBL] [Abstract][Full Text] [Related]
2. Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias. Molema F; Jacobs EH; Onkenhout W; Schoonderwoerd GC; Langendonk JG; Williams M J Inherit Metab Dis; 2018 Nov; 41(6):1179-1187. PubMed ID: 30159853 [TBL] [Abstract][Full Text] [Related]
3. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. Wajner M; Goodman SI J Bioenerg Biomembr; 2011 Feb; 43(1):31-8. PubMed ID: 21249436 [TBL] [Abstract][Full Text] [Related]
4. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status. Enns GM; Moore T; Le A; Atkuri K; Shah MK; Cusmano-Ozog K; Niemi AK; Cowan TM PLoS One; 2014; 9(6):e100001. PubMed ID: 24941115 [TBL] [Abstract][Full Text] [Related]
5. Pathophysiology of propionic and methylmalonic acidemias. Part 1: Complications. Haijes HA; Jans JJM; Tas SY; Verhoeven-Duif NM; van Hasselt PM J Inherit Metab Dis; 2019 Sep; 42(5):730-744. PubMed ID: 31119747 [TBL] [Abstract][Full Text] [Related]
6. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias. Colín-González AL; Paz-Loyola AL; Serratos I; Seminotti B; Ribeiro CA; Leipnitz G; Souza DO; Wajner M; Santamaría A Neuroscience; 2015 Nov; 308():64-74. PubMed ID: 26343296 [TBL] [Abstract][Full Text] [Related]
7. Disruption of mitochondrial functions and oxidative stress contribute to neurologic dysfunction in organic acidurias. Wajner M; Vargas CR; Amaral AU Arch Biochem Biophys; 2020 Dec; 696():108646. PubMed ID: 33098870 [TBL] [Abstract][Full Text] [Related]
8. Comparative frequency and severity of hypoglycemia in selected organic acidemias, branched chain amino acidemia, and disorders of fructose metabolism. Worthen HG; al Ashwal A; Ozand PT; Garawi S; Rahbeeni Z; al Odaib A; Subramanyam SB; Rashed M Brain Dev; 1994 Nov; 16 Suppl():81-5. PubMed ID: 7726385 [TBL] [Abstract][Full Text] [Related]
9. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810 [TBL] [Abstract][Full Text] [Related]
10. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Wei YH; Lu CY; Wei CY; Ma YS; Lee HC Chin J Physiol; 2001 Mar; 44(1):1-11. PubMed ID: 11403514 [TBL] [Abstract][Full Text] [Related]
11. Patients with organic acidaemias have an altered thiol status. Salmi H; Leonard JV; Lapatto R Acta Paediatr; 2012 Nov; 101(11):e505-8. PubMed ID: 22849335 [TBL] [Abstract][Full Text] [Related]
12. Molecular and biochemical investigations of inborn errors of metabolism-altered redox homeostasis in branched-chain amino acid disorders, organic acidurias, and homocystinuria. Ray SK; Mukherjee S Free Radic Res; 2021 Jun; 55(6):627-640. PubMed ID: 33504220 [TBL] [Abstract][Full Text] [Related]
13. Hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome with evidence of mitochondrial dysfunction due to a novel SLC25A15 (ORNT1) gene mutation in a Palestinian family. Korman SH; Kanazawa N; Abu-Libdeh B; Gutman A; Tsujino S J Neurol Sci; 2004 Mar; 218(1-2):53-8. PubMed ID: 14759633 [TBL] [Abstract][Full Text] [Related]
14. Pancreatitis in patients with organic acidemias. Kahler SG; Sherwood WG; Woolf D; Lawless ST; Zaritsky A; Bonham J; Taylor CJ; Clarke JT; Durie P; Leonard JV J Pediatr; 1994 Feb; 124(2):239-43. PubMed ID: 8301430 [TBL] [Abstract][Full Text] [Related]
15. Selective Screening of Fatty Acids Oxidation Defects and Organic Acidemias by Liquid Chromatography/tandem Mass Spectrometry Acylcarnitine Analysis in Brazilian Patients. Vargas CR; Ribas GS; da Silva JM; Sitta A; Deon M; de Moura Coelho D; Wajner M Arch Med Res; 2018 Apr; 49(3):205-212. PubMed ID: 30119976 [TBL] [Abstract][Full Text] [Related]
16. Cardiometabolic risk factor clustering in patients with deficient branched-chain amino acid catabolism: A case-control study. Gancheva S; Caspari D; Bierwagen A; Jelenik T; Caprio S; Santoro N; Rothe M; Markgraf DF; Herebian D; Hwang JH; Öner-Sieben S; Mennenga J; Pacini G; Thimm E; Schlune A; Meissner T; Vom Dahl S; Klee D; Mayatepek E; Roden M; Ensenauer R J Inherit Metab Dis; 2020 Sep; 43(5):981-993. PubMed ID: 32118306 [TBL] [Abstract][Full Text] [Related]
17. Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy. Demarest TG; Schuh RA; Waddell J; McKenna MC; Fiskum G J Neurochem; 2016 Jun; 137(5):714-29. PubMed ID: 27197831 [TBL] [Abstract][Full Text] [Related]
18. Altered Redox Homeostasis in Branched-Chain Amino Acid Disorders, Organic Acidurias, and Homocystinuria. Richard E; Gallego-Villar L; Rivera-Barahona A; Oyarzábal A; Pérez B; Rodríguez-Pombo P; Desviat LR Oxid Med Cell Longev; 2018; 2018():1246069. PubMed ID: 29743968 [TBL] [Abstract][Full Text] [Related]