These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
580 related articles for article (PubMed ID: 19224045)
1. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations. Zhang J; Jin H; Sullivan MB; Lim FC; Wu P Phys Chem Chem Phys; 2009 Mar; 11(9):1441-6. PubMed ID: 19224045 [TBL] [Abstract][Full Text] [Related]
2. Catalytic activity of Pd ensembles over Au(111) surface for CO oxidation: a first-principles study. Yuan DW; Liu ZR; Chen JH J Chem Phys; 2011 Feb; 134(5):054704. PubMed ID: 21303149 [TBL] [Abstract][Full Text] [Related]
3. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms. Camellone MF; Fabris S J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624 [TBL] [Abstract][Full Text] [Related]
4. First-principle calculations on CO oxidation catalyzed by a gold nanoparticle. Chen HT; Chang JG; Ju SP; Chen HL J Comput Chem; 2010 Jan; 31(2):258-65. PubMed ID: 19434739 [TBL] [Abstract][Full Text] [Related]
5. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102 [TBL] [Abstract][Full Text] [Related]
6. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. Xu J; White T; Li P; He C; Yu J; Yuan W; Han YF J Am Chem Soc; 2010 Aug; 132(30):10398-406. PubMed ID: 20662517 [TBL] [Abstract][Full Text] [Related]
7. Characterization and catalytic-hydrogenation behavior of SiO2-embedded nanoscopic Pd, Au, and Pd-Au alloy colloids. Pârvulescu VI; Pârvulescu V; Endruschat U; Filoti G; Wagner FE; Kübel C; Richards R Chemistry; 2006 Mar; 12(8):2343-57. PubMed ID: 16380952 [TBL] [Abstract][Full Text] [Related]
8. In situ formation of Au-Pd bimetallic active sites promoting the physically mixed monometallic catalysts in the liquid-phase oxidation of alcohols. Wang D; Villa A; Spontoni P; Su DS; Prati L Chemistry; 2010 Sep; 16(33):10007-13. PubMed ID: 20623809 [TBL] [Abstract][Full Text] [Related]
9. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. Wang AQ; Chang CM; Mou CY J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427 [TBL] [Abstract][Full Text] [Related]
10. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. Raghuveer V; Manthiram A; Bard AJ J Phys Chem B; 2005 Dec; 109(48):22909-12. PubMed ID: 16853984 [TBL] [Abstract][Full Text] [Related]
11. Rh(1-x)Pd(x) nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Renzas JR; Huang W; Zhang Y; Grass ME; Hoang DT; Alayoglu S; Butcher DR; Tao FF; Liu Z; Somorjai GA Phys Chem Chem Phys; 2011 Feb; 13(7):2556-62. PubMed ID: 21183987 [TBL] [Abstract][Full Text] [Related]
12. Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Tang W; Henkelman G J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840 [TBL] [Abstract][Full Text] [Related]
13. Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction. Teng X; Wang Q; Liu P; Han W; Frenkel AI; Wen W; Marinkovic N; Hanson JC; Rodriguez JA J Am Chem Soc; 2008 Jan; 130(3):1093-101. PubMed ID: 18161978 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au). Fernández JL; Walsh DA; Bard AJ J Am Chem Soc; 2005 Jan; 127(1):357-65. PubMed ID: 15631486 [TBL] [Abstract][Full Text] [Related]
15. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
16. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts. Luo L; Zhang L; Henkelman G; Crooks RM J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734 [TBL] [Abstract][Full Text] [Related]
17. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. Chen CH; Sarma LS; Chen JM; Shih SC; Wang GR; Liu DG; Tang MT; Lee JF; Hwang BJ ACS Nano; 2007 Sep; 1(2):114-25. PubMed ID: 19206527 [TBL] [Abstract][Full Text] [Related]
18. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts. Villa A; Wang D; Su D; Veith GM; Prati L Phys Chem Chem Phys; 2010 Mar; 12(9):2183-9. PubMed ID: 20165767 [TBL] [Abstract][Full Text] [Related]
19. Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. Glaspell G; Fuoco L; El-Shall MS J Phys Chem B; 2005 Sep; 109(37):17350-5. PubMed ID: 16853217 [TBL] [Abstract][Full Text] [Related]
20. Probing the interface in vapor-deposited bimetallic Pd-Au and Pt-Au films by CO adsorption from the liquid phase. Ferri D; Behzadi B; Kappenberger P; Hauert R; Ernst KH; Baiker A Langmuir; 2007 Jan; 23(3):1203-8. PubMed ID: 17241033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]