These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 19224381)
1. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae). Mlinarec J; Chester M; Siljak-Yakovlev S; Papes D; Leitch AR; Besendorfer V Chromosome Res; 2009; 17(3):331-46. PubMed ID: 19224381 [TBL] [Abstract][Full Text] [Related]
2. Repetitive sequences in the genome of Anemone blanda: identification of tandem arrays and of dispersed repeats. Hagemann S; Scheer B; Schweizer D Chromosoma; 1993 May; 102(5):312-24. PubMed ID: 8325163 [TBL] [Abstract][Full Text] [Related]
3. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Schmidt T; Heslop-Harrison JS Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122 [TBL] [Abstract][Full Text] [Related]
4. Cytogenetic and molecular characterization of a highly repeated DNA sequence in the peach potato aphid Myzus persicae. Mandrioli M; Bizzaro D; Manicardi GC; Gionghi D; Bassoli L; Bianchi U Chromosoma; 1999 Dec; 108(7):436-42. PubMed ID: 10654082 [TBL] [Abstract][Full Text] [Related]
5. Molecular organization of terminal repetitive DNA in Beta species. Dechyeva D; Schmidt T Chromosome Res; 2006; 14(8):881-97. PubMed ID: 17195925 [TBL] [Abstract][Full Text] [Related]
6. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463 [TBL] [Abstract][Full Text] [Related]
7. Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ambrozová K; Mandáková T; Bures P; Neumann P; Leitch IJ; Koblízková A; Macas J; Lysak MA Ann Bot; 2011 Feb; 107(2):255-68. PubMed ID: 21156758 [TBL] [Abstract][Full Text] [Related]
8. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Dechyeva D; Gindullis F; Schmidt T Chromosome Res; 2003; 11(1):3-21. PubMed ID: 12675302 [TBL] [Abstract][Full Text] [Related]
9. Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Pich U; Schubert I Chromosome Res; 1998 Jun; 6(4):315-21. PubMed ID: 9688522 [TBL] [Abstract][Full Text] [Related]
10. Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). Menzel G; Dechyeva D; Wenke T; Holtgräwe D; Weisshaar B; Schmidt T Ann Bot; 2008 Oct; 102(4):521-30. PubMed ID: 18682437 [TBL] [Abstract][Full Text] [Related]
11. How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae). Mata-Sucre Y; Sader M; Van-Lume B; Gagnon E; Pedrosa-Harand A; Leitch IJ; Lewis GP; Souza G Planta; 2020 Sep; 252(4):49. PubMed ID: 32918627 [TBL] [Abstract][Full Text] [Related]
12. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Emadzade K; Jang TS; Macas J; Kovařík A; Novák P; Parker J; Weiss-Schneeweiss H Ann Bot; 2014 Dec; 114(8):1597-608. PubMed ID: 25169019 [TBL] [Abstract][Full Text] [Related]
13. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Yamada K; Nishida-Umehara C; Matsuda Y Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323 [TBL] [Abstract][Full Text] [Related]
14. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681 [TBL] [Abstract][Full Text] [Related]
15. The impact of the Tekay chromoviral elements on genome organisation and evolution of Anemone s.l. (Ranunculaceae). Mlinarec J; Franjević D; Harapin J; Besendorfer V Plant Biol (Stuttg); 2016 Mar; 18(2):332-47. PubMed ID: 26370195 [TBL] [Abstract][Full Text] [Related]
16. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity. Morgante M; Jurman I; Shi L; Zhu T; Keim P; Rafalski JA Chromosome Res; 1997 Sep; 5(6):363-73. PubMed ID: 9364938 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition. Van-Lume B; Mata-Sucre Y; Báez M; Ribeiro T; Huettel B; Gagnon E; Leitch IJ; Pedrosa-Harand A; Lewis GP; Souza G Planta; 2019 Dec; 250(6):2173-2186. PubMed ID: 31696317 [TBL] [Abstract][Full Text] [Related]
18. A subtelomeric satellite DNA family isolated from the genome of the dioecious plant Silene latifolia. Garrido-Ramos MA; de la Herrán R; Ruiz Rejón M; Ruiz Rejón C Genome; 1999 Jun; 42(3):442-6. PubMed ID: 10382291 [TBL] [Abstract][Full Text] [Related]
20. Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Lin JY; Jacobus BH; SanMiguel P; Walling JG; Yuan Y; Shoemaker RC; Young ND; Jackson SA Genetics; 2005 Jul; 170(3):1221-30. PubMed ID: 15879505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]