BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19224558)

  • 1. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus.
    Loghavi L; Sastry SK; Yousef AE
    Biotechnol Prog; 2009; 25(1):85-94. PubMed ID: 19224558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of moderate electric field frequency on growth kinetics and metabolic activity of Lactobacillus acidophilus.
    Loghavi L; Sastry SK; Yousef AE
    Biotechnol Prog; 2008; 24(1):148-53. PubMed ID: 18184003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of moderate electric field on the metabolic activity and growth kinetics of Lactobacillus acidophilus.
    Loghavi L; Sastry SK; Yousef AE
    Biotechnol Bioeng; 2007 Nov; 98(4):872-81. PubMed ID: 17461422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields.
    Wouters PC; Bos AP; Ueckert J
    Appl Environ Microbiol; 2001 Jul; 67(7):3092-101. PubMed ID: 11425727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated.
    García D; Gómez N; Mañas P; Raso J; Pagán R
    Int J Food Microbiol; 2007 Jan; 113(2):219-27. PubMed ID: 16987561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing.
    Aronsson K; Rönner U; Borch E
    Int J Food Microbiol; 2005 Mar; 99(1):19-32. PubMed ID: 15718026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of Escherichia coli and Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage.
    Cao-Hoang L; Dumont F; Marechal PA; Gervais P
    Arch Microbiol; 2010 Apr; 192(4):299-305. PubMed ID: 20191264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].
    Zhang Y; Zeng XA; Wen QB; Li L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):156-60. PubMed ID: 18422142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temperature effect during pulse application on cell membrane fluidity and permeabilization.
    Kanduser M; Sentjurc M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):52-7. PubMed ID: 18502189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Permeabilization of tumor cells induced by pulsed electric fields in vitro].
    Andriianov IuV; Andriianova ON; Golovanov MV; Dobrynin IaV; Kozodoĭ PV; Smirnov VP
    Biofizika; 2002; 47(3):524-30. PubMed ID: 12068611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121.
    Noh DO; Kim SH; Gilliland SE
    J Dairy Sci; 1997 Dec; 80(12):3107-13. PubMed ID: 9436091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cell orientation and electric field frequency on the transmembrane potential induced in ellipsoidal cells.
    Maswiwat K; Wachner D; Gimsa J
    Bioelectrochemistry; 2008 Nov; 74(1):130-41. PubMed ID: 18621589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane permeabilization and cell damage by ultrashort electric field shocks.
    Pakhomov AG; Shevin R; White JA; Kolb JF; Pakhomova ON; Joshi RP; Schoenbach KH
    Arch Biochem Biophys; 2007 Sep; 465(1):109-18. PubMed ID: 17555703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electropermeabilization and fluorescent tracer exchange: the role of whole-cell capacitance.
    Sukhorukov VL; Djuzenova CS; Frank H; Arnold WM; Zimmermann U
    Cytometry; 1995 Nov; 21(3):230-40. PubMed ID: 8582245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeabilization of plant tissues by monopolar pulsed electric fields: effect of frequency.
    Asavasanti S; Ristenpart W; Stroeve P; Barrett DM
    J Food Sci; 2011; 76(1):E98-111. PubMed ID: 21535681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactobacillus acidophilus La-5 increases lactacin B production when it senses live target bacteria.
    Tabasco R; García-Cayuela T; Peláez C; Requena T
    Int J Food Microbiol; 2009 Jun; 132(2-3):109-16. PubMed ID: 19411126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF).
    Pakhomov AG; Kolb JF; White JA; Joshi RP; Xiao S; Schoenbach KH
    Bioelectromagnetics; 2007 Dec; 28(8):655-63. PubMed ID: 17654532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of antibacterial acting extracorporeal shockwaves on bacterial cell integrity.
    Horn C; Mengele K; Gerdesmeyer L; Gradinger R; Gollwitzer H
    Med Sci Monit; 2009 Dec; 15(12):BR364-9. PubMed ID: 19946225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid assessment of the physiological status of Streptococcus macedonicus by flow cytometry and fluorescence probes.
    Papadimitriou K; Pratsinis H; Nebe-von-Caron G; Kletsas D; Tsakalidou E
    Int J Food Microbiol; 2006 Oct; 111(3):197-205. PubMed ID: 16934355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring cell viability with membrane impermeable zinc fluorescent indicator.
    Stork CJ; Li YV
    J Neurosci Methods; 2006 Sep; 155(2):180-6. PubMed ID: 16466804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.