These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 19224607)
1. Flow cytometric cell cycle analysis of muscle precursor cells cultured within 3D scaffolds in a perfusion bioreactor. Flaibani M; Luni C; Sbalchiero E; Elvassore N Biotechnol Prog; 2009; 25(1):286-95. PubMed ID: 19224607 [TBL] [Abstract][Full Text] [Related]
2. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro]. Li X; Li DC; Wang L; Lu BH; Wang Z Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096 [TBL] [Abstract][Full Text] [Related]
3. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Gomes ME; Sikavitsas VI; Behravesh E; Reis RL; Mikos AG J Biomed Mater Res A; 2003 Oct; 67(1):87-95. PubMed ID: 14517865 [TBL] [Abstract][Full Text] [Related]
4. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. Zhao F; Grayson WL; Ma T; Irsigler A J Cell Physiol; 2009 May; 219(2):421-9. PubMed ID: 19170078 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor. Cimetta E; Flaibani M; Mella M; Serena E; Boldrin L; De Coppi P; Elvassore N Int J Artif Organs; 2007 May; 30(5):415-28. PubMed ID: 17551905 [TBL] [Abstract][Full Text] [Related]
6. Design and validation of a dynamic flow perfusion bioreactor for use with compliant tissue engineering scaffolds. Jaasma MJ; Plunkett NA; O'Brien FJ J Biotechnol; 2008 Feb; 133(4):490-6. PubMed ID: 18221813 [TBL] [Abstract][Full Text] [Related]
7. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Liu H; Lin J; Roy K Biomaterials; 2006 Dec; 27(36):5978-89. PubMed ID: 16824594 [TBL] [Abstract][Full Text] [Related]
8. High-density seeding of myocyte cells for cardiac tissue engineering. Radisic M; Euloth M; Yang L; Langer R; Freed LE; Vunjak-Novakovic G Biotechnol Bioeng; 2003 May; 82(4):403-14. PubMed ID: 12632397 [TBL] [Abstract][Full Text] [Related]
9. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Du D; Furukawa KS; Ushida T Biotechnol Bioeng; 2009 Apr; 102(6):1670-8. PubMed ID: 19160373 [TBL] [Abstract][Full Text] [Related]
10. [Experimental study of cardiac muscle tissue engineering in bioreactor]. Liu X; Wang CY; Guo XM; OuYang WQ Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):7-12. PubMed ID: 12905598 [TBL] [Abstract][Full Text] [Related]
11. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro]. Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853 [TBL] [Abstract][Full Text] [Related]
12. Oscillatory perfusion seeding and culturing of osteoblast-like cells on porous beta-tricalcium phosphate scaffolds. Du D; Furukawa K; Ushida T J Biomed Mater Res A; 2008 Sep; 86(3):796-803. PubMed ID: 18041721 [TBL] [Abstract][Full Text] [Related]
13. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model. Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048 [TBL] [Abstract][Full Text] [Related]
14. Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions. Stephens JS; Cooper JA; Phelan FR; Dunkers JP Biotechnol Bioeng; 2007 Jul; 97(4):952-61. PubMed ID: 17149772 [TBL] [Abstract][Full Text] [Related]
15. [Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro]. Liu XM; Liu H; Xiong FY; Chen ZL Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):484-8. PubMed ID: 15969070 [TBL] [Abstract][Full Text] [Related]
16. Bone formation in trabecular bone cell seeded scaffolds used for reconstruction of the rat mandible. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Szubtarsky N Int J Oral Maxillofac Surg; 2009 Feb; 38(2):166-72. PubMed ID: 19121923 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs. Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291 [TBL] [Abstract][Full Text] [Related]
18. Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Wülfing T J Biomed Mater Res A; 2009 Aug; 90(2):429-37. PubMed ID: 18523951 [TBL] [Abstract][Full Text] [Related]
19. Application of porous glycosaminoglycan-based scaffolds for expansion of human cord blood stem cells in perfusion culture. Cho CH; Eliason JF; Matthew HW J Biomed Mater Res A; 2008 Jul; 86(1):98-107. PubMed ID: 17941019 [TBL] [Abstract][Full Text] [Related]
20. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction. Olivier V; Hivart P; Descamps M; Hardouin P Biomed Mater; 2007 Sep; 2(3):174-80. PubMed ID: 18458469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]