These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19224728)

  • 1. Detection of multifiber neuronal firings: a mixture separation model applied to sympathetic recordings.
    Tan CO; Taylor JA; Ler AS; Cohen MA
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):147-58. PubMed ID: 19224728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and opportunities in processing muscle sympathetic nerve activity with wavelet denoising techniques: detecting single action potentials in multiunit sympathetic nerve recordings in humans.
    Zhang Q; Liu Y; Brown L; Shoemaker JK
    Auton Neurosci; 2007 Jul; 134(1-2):92-105. PubMed ID: 17412648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis of stationary and discrete wavelet transform for action potential detection from sympathetic nerve recordings in humans.
    Salmanpour A; Brown LJ; Shoemaker JK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2932-5. PubMed ID: 19163320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet methods for spike detection in mouse renal sympathetic nerve activity.
    Brychta RJ; Tuntrakool S; Appalsamy M; Keller NR; Robertson D; Shiavi RG; Diedrich A
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):82-93. PubMed ID: 17260859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography.
    Diedrich A; Charoensuk W; Brychta RJ; Ertl AC; Shiavi R
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):41-50. PubMed ID: 12617523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifiber renal SNA recordings predict mean arterial blood pressure in unanesthetized rat.
    Burgess DE; Hundley JC; Li SG; Randall DC; Brown DR
    Am J Physiol; 1997 Sep; 273(3 Pt 2):R851-7. PubMed ID: 9321859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike detection in human muscle sympathetic nerve activity using a matched wavelet approach.
    Salmanpour A; Brown LJ; Shoemaker JK
    J Neurosci Methods; 2010 Nov; 193(2):343-55. PubMed ID: 20831884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artifact characterization and removal for in vivo neural recording.
    Islam MK; Rastegarnia A; Nguyen AT; Yang Z
    J Neurosci Methods; 2014 Apr; 226():110-123. PubMed ID: 24512692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike detection in human muscle sympathetic nerve activity using the kurtosis of stationary wavelet transform coefficients.
    Brychta RJ; Shiavi R; Robertson D; Diedrich A
    J Neurosci Methods; 2007 Mar; 160(2):359-67. PubMed ID: 17083982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and removal of stimulation artifacts in electroencephalogram recordings.
    Hoffmann U; Cho W; Ramos-Murguialday A; Keller T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7159-62. PubMed ID: 22255989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale correlation of wavelet coefficients approach to spike detection.
    Yang C; Olson B; Si J
    Neural Comput; 2011 Jan; 23(1):215-50. PubMed ID: 20964544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic spike detection based on adaptive template matching for extracellular neural recordings.
    Kim S; McNames J
    J Neurosci Methods; 2007 Sep; 165(2):165-74. PubMed ID: 17669507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to extract realistic artifacts from electrocardiogram recordings for robust algorithm testing.
    Galeotti L; Scully CG
    J Electrocardiol; 2018; 51(6S):S56-S60. PubMed ID: 30180996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and modeling of muscle sympathetic nerve spiking.
    Zaydens E; Taylor JA; Cohen MA; Eden UT
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2914-24. PubMed ID: 23744662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new spike detection algorithm for extracellular neural recordings.
    Shahid S; Walker J; Smith LS
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):853-66. PubMed ID: 19622433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing.
    Greco A; Valenza G; Lanata A; Scilingo EP; Citi L
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):797-804. PubMed ID: 26336110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segregated signal averaging of sympathetic baroreflex responses in humans.
    Halliwill JR
    J Appl Physiol (1985); 2000 Feb; 88(2):767-73. PubMed ID: 10658049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractal dimension analysis for spike detection in low SNR extracellular signals.
    Salmasi M; Büttner U; Glasauer S
    J Neural Eng; 2016 Jun; 13(3):036004. PubMed ID: 27064604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian clustering method for tracking neural signals over successive intervals.
    Wolf MT; Burdick JW
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2649-59. PubMed ID: 19643700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate spike sorting for multi-unit recordings.
    Takekawa T; Isomura Y; Fukai T
    Eur J Neurosci; 2010 Jan; 31(2):263-72. PubMed ID: 20074217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.