These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19224921)

  • 21. IRBIT: it is everywhere.
    Yang D; Shcheynikov N; Muallem S
    Neurochem Res; 2011 Jul; 36(7):1166-74. PubMed ID: 21152975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of human cleavage factor Im involved in the 3' end processing of messenger RNA precursors.
    Rüegsegger U; Beyer K; Keller W
    J Biol Chem; 1996 Mar; 271(11):6107-13. PubMed ID: 8626397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent molecular insights into canonical pre-mRNA 3'-end processing.
    Sun Y; Hamilton K; Tong L
    Transcription; 2020 Apr; 11(2):83-96. PubMed ID: 32522085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex.
    Clerici M; Faini M; Aebersold R; Jinek M
    Elife; 2017 Dec; 6():. PubMed ID: 29274231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33.
    Schönemann L; Kühn U; Martin G; Schäfer P; Gruber AR; Keller W; Zavolan M; Wahle E
    Genes Dev; 2014 Nov; 28(21):2381-93. PubMed ID: 25301781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.
    Bilger A; Fox CA; Wahle E; Wickens M
    Genes Dev; 1994 May; 8(9):1106-16. PubMed ID: 7926790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RBBP6 activates the pre-mRNA 3' end processing machinery in humans.
    Boreikaite V; Elliott TS; Chin JW; Passmore LA
    Genes Dev; 2022 Feb; 36(3-4):210-224. PubMed ID: 35177536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Irbit mediates synergy between ca(2+) and cAMP signaling pathways during epithelial transport in mice.
    Park S; Shcheynikov N; Hong JH; Zheng C; Suh SH; Kawaai K; Ando H; Mizutani A; Abe T; Kiyonari H; Seki G; Yule D; Mikoshiba K; Muallem S
    Gastroenterology; 2013 Jul; 145(1):232-241. PubMed ID: 23542070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor.
    Zhao J; Kessler M; Helmling S; O'Connor JP; Moore C
    Mol Cell Biol; 1999 Nov; 19(11):7733-40. PubMed ID: 10523662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence that polyadenylation factor CPSF-73 is the mRNA 3' processing endonuclease.
    Ryan K; Calvo O; Manley JL
    RNA; 2004 Apr; 10(4):565-73. PubMed ID: 15037765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex.
    Mendez R; Murthy KG; Ryan K; Manley JL; Richter JD
    Mol Cell; 2000 Nov; 6(5):1253-9. PubMed ID: 11106762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drosophila clipper/CPSF 30K is a post-transcriptionally regulated nuclear protein that binds RNA containing GC clusters.
    Bai C; Tolias PP
    Nucleic Acids Res; 1998 Apr; 26(7):1597-604. PubMed ID: 9512528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. IRBIT coordinates epithelial fluid and HCO3- secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct.
    Yang D; Shcheynikov N; Zeng W; Ohana E; So I; Ando H; Mizutani A; Mikoshiba K; Muallem S
    J Clin Invest; 2009 Jan; 119(1):193-202. PubMed ID: 19033647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence similarity between the 73-kilodalton protein of mammalian CPSF and a subunit of yeast polyadenylation factor I.
    Jenny A; Minvielle-Sebastia L; Preker PJ; Keller W
    Science; 1996 Nov; 274(5292):1514-7. PubMed ID: 8929409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implications of polyadenylation in health and disease.
    Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A
    Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct roles of two Yth1p domains in 3'-end cleavage and polyadenylation of yeast pre-mRNAs.
    Barabino SM; Ohnacker M; Keller W
    EMBO J; 2000 Jul; 19(14):3778-87. PubMed ID: 10899131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian Cleavage/ polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA.
    Zhao J; Kessler MM; Moore CL
    J Biol Chem; 1997 Apr; 272(16):10831-8. PubMed ID: 9099738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biophysical characterizations of the recognition of the AAUAAA polyadenylation signal.
    Hamilton K; Sun Y; Tong L
    RNA; 2019 Dec; 25(12):1673-1680. PubMed ID: 31462423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An IRBIT homologue lacks binding activity to inositol 1,4,5-trisphosphate receptor due to the unique N-terminal appendage.
    Ando H; Mizutani A; Mikoshiba K
    J Neurochem; 2009 Apr; 109(2):539-50. PubMed ID: 19220705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a Drosophila homologue of the 160-kDa subunit of the cleavage and polyadenylation specificity factor CPSF.
    Salinas CA; Sinclair DA; O'Hare K; Brock HW
    Mol Gen Genet; 1998 Apr; 257(6):672-80. PubMed ID: 9604891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.