These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19225664)

  • 1. The mechanism of cell uptake for luminescent lanthanide optical probes: the role of macropinocytosis and the effect of enhanced membrane permeability on compartmentalisation.
    New EJ; Parker D
    Org Biomol Chem; 2009 Mar; 7(5):851-5. PubMed ID: 19225664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of responsive lanthanide probes for cellular applications.
    New EJ; Parker D; Smith DG; Walton JW
    Curr Opin Chem Biol; 2010 Apr; 14(2):238-46. PubMed ID: 19884038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence.
    Montgomery CP; Murray BS; New EJ; Pal R; Parker D
    Acc Chem Res; 2009 Jul; 42(7):925-37. PubMed ID: 19191558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitement in f block: structure, dynamics and function of nine-coordinate chiral lanthanide complexes in aqueous media.
    Parker D
    Chem Soc Rev; 2004 Mar; 33(3):156-65. PubMed ID: 15026820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lanthanide complexes as chiral probes exploiting circularly polarized luminescence.
    Carr R; Evans NH; Parker D
    Chem Soc Rev; 2012 Dec; 41(23):7673-86. PubMed ID: 22895164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of emissive lanthanide complexes suitable for cellular imaging that resist quenching by endogenous anti-oxidants.
    Poole RA; Montgomery CP; New EJ; Congreve A; Parker D; Botta M
    Org Biomol Chem; 2007 Jul; 5(13):2055-62. PubMed ID: 17581648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and cell localization of self-assembled dinuclear lanthanide bioprobes.
    Chauvin AS; Thomas F; Song B; Vandevyver CD; Bünzli JC
    Philos Trans A Math Phys Eng Sci; 2013 Jul; 371(1995):20120295. PubMed ID: 23776298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of luminescence intensity of lanthanide complexes by photoinduced electron transfer and its application to a long-lived protease probe.
    Terai T; Kikuchi K; Iwasawa SY; Kawabe T; Hirata Y; Urano Y; Nagano T
    J Am Chem Soc; 2006 May; 128(21):6938-46. PubMed ID: 16719474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved luminescence microscopy of bimetallic lanthanide helicates in living cells.
    Song B; Vandevyver CD; Chauvin AS; Bünzli JC
    Org Biomol Chem; 2008 Nov; 6(22):4125-33. PubMed ID: 18972043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipophilic ruthenium complexes with tuned cell membrane affinity and photoactivated uptake.
    Svensson FR; Matson M; Li M; Lincoln P
    Biophys Chem; 2010 Jul; 149(3):102-6. PubMed ID: 20471741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination-driven nanosized lanthanide "molecular lantern" with tunable luminescent properties.
    Dong YB; Wang P; Ma JP; Zhao XX; Wang HY; Tang B; Huang RQ
    J Am Chem Soc; 2007 Apr; 129(16):4872-3. PubMed ID: 17402737
    [No Abstract]   [Full Text] [Related]  

  • 12. Lanthanide-based luminescent probes for selective time-gated detection of hydrogen peroxide in water and in living cells.
    Lippert AR; Gschneidtner T; Chang CJ
    Chem Commun (Camb); 2010 Oct; 46(40):7510-2. PubMed ID: 20838673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live cell imaging of lysosomal pH changes with pH responsive ratiometric lanthanide probes.
    Smith DG; McMahon BK; Pal R; Parker D
    Chem Commun (Camb); 2012 Sep; 48(68):8520-2. PubMed ID: 22820610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of induced circularly polarized luminescence (CPL) from racemic D(3) lanthanide complexes to determine the absolute configuration of amino acids.
    Muller G; Riehl JP
    J Fluoresc; 2005 Jul; 15(4):553-8. PubMed ID: 16167213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescence switching by hybridization-directed mixed lanthanide complex formation.
    Karhunen U; Jaakkola L; Wang Q; Lamminmäki U; Soukka T
    Anal Chem; 2010 Jan; 82(2):751-4. PubMed ID: 20017568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitised luminescence in lanthanide containing arrays and d-f hybrids.
    Faulkner S; Natrajan LS; Perry WS; Sykes D
    Dalton Trans; 2009 May; (20):3890-9. PubMed ID: 19440586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanthanide luminescence for biomedical analyses and imaging.
    Bünzli JC
    Chem Rev; 2010 May; 110(5):2729-55. PubMed ID: 20151630
    [No Abstract]   [Full Text] [Related]  

  • 18. Principles of responsive lanthanide-based luminescent probes for cellular imaging.
    Thibon A; Pierre VC
    Anal Bioanal Chem; 2009 May; 394(1):107-20. PubMed ID: 19283368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient sensitization of lanthanide luminescence by tetrazole-based polydentate ligands.
    Giraud M; Andreiadis ES; Fisyuk AS; Demadrille R; Pécaut J; Imbert D; Mazzanti M
    Inorg Chem; 2008 May; 47(10):3952-4. PubMed ID: 18438982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of the sensitiser substituent determines quenching sensitivity and protein affinity and influences the design of emissive lanthanide complexes as optical probes for intracellular use.
    Kielar F; Law GL; New EJ; Parker D
    Org Biomol Chem; 2008 Jul; 6(13):2256-8. PubMed ID: 18563255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.