BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 19225819)

  • 1. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.
    Tsui CS; Gan JQ; Roberts SJ
    Med Biol Eng Comput; 2009 Mar; 47(3):257-65. PubMed ID: 19225819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.
    Tsui CS; Gan JQ; Hu H
    Clin EEG Neurosci; 2011 Oct; 42(4):225-9. PubMed ID: 22208119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward self-paced brain-computer communication: navigation through virtual worlds.
    Scherer R; Lee F; Schlogl A; Leeb R; Bischof H; Pfurtscheller G
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):675-82. PubMed ID: 18270004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface.
    Yu Y; Zhou Z; Yin E; Jiang J; Tang J; Liu Y; Hu D
    Comput Biol Med; 2016 Oct; 77():148-55. PubMed ID: 27544071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning from feedback training data at a self-paced brain-computer interface.
    Zhang H; Liyanage SR; Wang C; Guan C
    J Neural Eng; 2011 Aug; 8(4):046035. PubMed ID: 21772075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.
    Bai O; Lin P; Huang D; Fei DY; Floeter MK
    Clin Neurophysiol; 2010 Aug; 121(8):1293-303. PubMed ID: 20347612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-quality training data detection method of EEG signals for motor imagery BCI system.
    Ouyang R; Jin Z; Tang S; Fan C; Wu X
    J Neurosci Methods; 2022 Jul; 376():109607. PubMed ID: 35483505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BCI using imaginary movements: the simulator.
    Rohani DA; Henning WS; Thomsen CE; Kjaer TW; Puthusserypady S; Sorensen HB
    Comput Methods Programs Biomed; 2013 Aug; 111(2):300-7. PubMed ID: 23706528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining ERD and ERS features to create a system-paced BCI.
    Thomas E; Fruitet J; Clerc M
    J Neurosci Methods; 2013 Jun; 216(2):96-103. PubMed ID: 23624244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
    Luo J; Wang J; Xu R; Xu K
    J Neurosci Methods; 2019 Jul; 323():98-107. PubMed ID: 31141703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.
    Mainsah BO; Collins LM; Colwell KA; Sellers EW; Ryan DB; Caves K; Throckmorton CS
    J Neural Eng; 2015 Feb; 12(1):016013. PubMed ID: 25588137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic and self-adaptive classification algorithm for motor imagery EEG signals.
    Belwafi K; Gannouni S; Aboalsamh H; Mathkour H; Belghith A
    J Neurosci Methods; 2019 Nov; 327():108346. PubMed ID: 31421162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plausibility assessment of a 2-state self-paced mental task-based BCI using the no-control performance analysis.
    Faradji F; Ward RK; Birch GE
    J Neurosci Methods; 2009 Jun; 180(2):330-9. PubMed ID: 19439361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network.
    Hazrati MKh; Erfanian A
    Med Eng Phys; 2010 Sep; 32(7):730-9. PubMed ID: 20510641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor prediction in Brain-Computer Interfaces for controlling mobile robots.
    Geng T; Gan JQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():634-7. PubMed ID: 19162735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of a brain-computer interface based on three states of motor imagery.
    Wang Y; Hong B; Gao X; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5059-62. PubMed ID: 18003143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.