BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19225900)

  • 1. Effect of volunteers on maize gene flow.
    Palaudelmàs M; Peñas G; Melé E; Serra J; Salvia J; Pla M; Nadal A; Messeguer J
    Transgenic Res; 2009 Aug; 18(4):583-94. PubMed ID: 19225900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling gene flow distribution within conventional fields and development of a simplified sampling method to quantify adventitious GM contents in maize.
    Melé E; Nadal A; Messeguer J; Melé-Messeguer M; Palaudelmàs M; Peñas G; Piferrer X; Capellades G; Serra J; Pla M
    Sci Rep; 2015 Nov; 5():17106. PubMed ID: 26596213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of gene stacking on gene flow: the case of maize.
    Paul L; Angevin F; Collonnier C; Messéan A
    Transgenic Res; 2012 Apr; 21(2):243-56. PubMed ID: 21681483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study.
    Pla M; La Paz JL; Peñas G; García N; Palaudelmàs M; Esteve T; Messeguer J; Melé E
    Transgenic Res; 2006 Apr; 15(2):219-28. PubMed ID: 16604462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay.
    Galeano P; Debat CM; Ruibal F; Fraguas LF; Galván GA
    Environ Biosafety Res; 2010; 9(3):147-54. PubMed ID: 21975255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the influence of field size on maize gene flow using SSR analysis.
    Palaudelmàs M; Melé E; Monfort A; Serra J; Salvia J; Messeguer J
    Transgenic Res; 2012 Jun; 21(3):471-83. PubMed ID: 21898271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of flowering time and distance between pollen source and recipient on maize.
    Nieh SC; Lin WS; Hsu YH; Shieh GJ; Kuo BJ
    GM Crops Food; 2014; 5(4):287-95. PubMed ID: 25523174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Literature review of the dispersal of transgenes from genetically modified maize].
    Ricroch A; Bergé JB; Messéan A
    C R Biol; 2009 Oct; 332(10):861-75. PubMed ID: 19819407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices.
    Coll A; Nadal A; Collado R; Capellades G; Kubista M; Messeguer J; Pla M
    Plant Mol Biol; 2010 Jun; 73(3):349-62. PubMed ID: 20349115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgene behavior in Zea mays L. crosses across different genetic backgrounds: Segregation patterns, cry1Ab transgene expression, insecticidal protein concentration and bioactivity against insect pests.
    Lohn AF; Trtikova M; Chapela I; Van den Berg J; du Plessis H; Hilbeck A
    PLoS One; 2020; 15(9):e0238523. PubMed ID: 32911522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape level: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops.
    Colbach N
    Environ Sci Pollut Res Int; 2009 May; 16(3):348-60. PubMed ID: 19067013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollen-mediated gene flow in maize in real situations of coexistence.
    Messeguer J; Peñas G; Ballester J; Bas M; Serra J; Salvia J; Palaudelmàs M; Melé E
    Plant Biotechnol J; 2006 Nov; 4(6):633-45. PubMed ID: 17309734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.
    Akiyama H; Sakata K; Kondo K; Tanaka A; Liu MS; Oguchi T; Furui S; Kitta K; Hino A; Teshima R
    J Agric Food Chem; 2008 Mar; 56(6):1977-83. PubMed ID: 18298063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spread of volunteer and feral maize plants in Central Europe: recent data from Austria.
    Pascher K
    Environ Sci Eur; 2016; 28(1):30. PubMed ID: 28090425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of using genetically modified (GM) corn/maize in Vietnam: Results of the first farm-level survey.
    Brookes G; Dinh TX
    GM Crops Food; 2021 Jan; 12(1):71-83. PubMed ID: 32997586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the prevalence of genetically modified maize in commercial animal feeds and food products in Turkey.
    Turkec A; Lucas SJ; Karlık E
    J Sci Food Agric; 2016 Jul; 96(9):3173-9. PubMed ID: 27295429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meteorological input data requirements to predict cross-pollination of GMO maize with Lagrangian approaches.
    Lipsius K; Wilhelm R; Richter O; Schmalstieg KJ; Schiemann J
    Environ Biosafety Res; 2006; 5(3):151-68. PubMed ID: 17445511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of MON810 and comparable non-GM maize varieties grown in agricultural fields.
    Coll A; Nadal A; Rossignol M; Puigdomènech P; Pla M
    Transgenic Res; 2011 Aug; 20(4):939-49. PubMed ID: 20972621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing agronomic and phenotypic plant characteristics between single and stacked events in soybean, maize, and cotton.
    Jose M; Vertuan H; Soares D; Sordi D; Bellini LF; Kotsubo R; Berger GU
    PLoS One; 2020; 15(4):e0231733. PubMed ID: 32339186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practicable group testing method to evaluate weight/weight GMO content in maize grains.
    Mano J; Yanaka Y; Ikezu Y; Onishi M; Futo S; Minegishi Y; Ninomiya K; Yotsuyanagi Y; Spiegelhalter F; Akiyama H; Teshima R; Hino A; Naito S; Koiwa T; Takabatake R; Furui S; Kitta K
    J Agric Food Chem; 2011 Jul; 59(13):6856-63. PubMed ID: 21604714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.