BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 19226205)

  • 1. Effect of VEGF treatment on the blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced magnetic resonance imaging.
    Patel CB; Cohen DM; Ahobila-Vajjula P; Sundberg LM; Chacko T; Narayana PA
    J Neurotrauma; 2009 Jul; 26(7):1005-16. PubMed ID: 19226205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced MRI.
    Cohen DM; Patel CB; Ahobila-Vajjula P; Sundberg LM; Chacko T; Liu SJ; Narayana PA
    NMR Biomed; 2009 Apr; 22(3):332-41. PubMed ID: 19023867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of vascular endothelial growth factor treatment in experimental traumatic spinal cord injury: in vivo longitudinal assessment.
    Sundberg LM; Herrera JJ; Narayana PA
    J Neurotrauma; 2011 Apr; 28(4):565-78. PubMed ID: 21299336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells.
    Matsushita T; Lankford KL; Arroyo EJ; Sasaki M; Neyazi M; Radtke C; Kocsis JD
    Exp Neurol; 2015 May; 267():152-64. PubMed ID: 25771801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained expression of vascular endothelial growth factor and angiopoietin-1 improves blood-spinal cord barrier integrity and functional recovery after spinal cord injury.
    Herrera JJ; Sundberg LM; Zentilin L; Giacca M; Narayana PA
    J Neurotrauma; 2010 Nov; 27(11):2067-76. PubMed ID: 20799882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protective effect of salvianolic acid B on blood-spinal cord barrier after compression spinal cord injury in rats.
    Fan ZK; Lv G; Wang YF; Li G; Yu DS; Wang YS; Zhang YQ; Mei XF; Cao Y
    J Mol Neurosci; 2013 Nov; 51(3):986-93. PubMed ID: 23943397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenovirus-delivered GFP-HO-1C[INCREMENT]23 attenuates blood-spinal cord barrier permeability after rat spinal cord contusion.
    Chang S; Bi Y; Meng X; Qu L; Cao Y
    Neuroreport; 2018 Mar; 29(5):402-407. PubMed ID: 29432301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuating experimental spinal cord injury by hyperbaric oxygen: stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10.
    Tai PA; Chang CK; Niu KC; Lin MT; Chiu WT; Lin CM
    J Neurotrauma; 2010 Jun; 27(6):1121-7. PubMed ID: 20334467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of VEGF and CX43 on the promotion of neurological recovery by hyperbaric oxygen treatment in spinal cord-injured rats.
    Liu X; Zhou Y; Wang Z; Yang J; Gao C; Su Q
    Spine J; 2014 Jan; 14(1):119-27. PubMed ID: 24183749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo assessment of blood-spinal cord barrier permeability: serial dynamic contrast enhanced MRI of spinal cord injury.
    Bilgen M; Dogan B; Narayana PA
    Magn Reson Imaging; 2002 May; 20(4):337-41. PubMed ID: 12165352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury.
    Figley SA; Khosravi R; Legasto JM; Tseng YF; Fehlings MG
    J Neurotrauma; 2014 Mar; 31(6):541-52. PubMed ID: 24237182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoxetine and vitamin C synergistically inhibits blood-spinal cord barrier disruption and improves functional recovery after spinal cord injury.
    Lee JY; Choi HY; Yune TY
    Neuropharmacology; 2016 Oct; 109():78-87. PubMed ID: 27256500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced vascular endothelial growth factor expression in contusive spinal cord injury.
    Herrera JJ; Nesic O; Narayana PA
    J Neurotrauma; 2009 Jul; 26(7):995-1003. PubMed ID: 19257807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deubiquitinase UCHL1 promotes angiogenesis and blood-spinal cord barrier function recovery after spinal cord injury by stabilizing Sox17.
    Wang J; Ji C; Ye W; Rong Y; Ge X; Wang Z; Tang P; Zhou Z; Luo Y; Cai W
    Cell Mol Life Sci; 2024 Mar; 81(1):137. PubMed ID: 38478109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium chloride contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by stimulating autophagic flux.
    Tong M; He Z; Lin X; Zhou Y; Wang Q; Zheng Z; Chen J; Xu H; Tian N
    Biochem Biophys Res Commun; 2018 Jan; 495(4):2525-2531. PubMed ID: 29274777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix metalloproteinase-3 promotes early blood-spinal cord barrier disruption and hemorrhage and impairs long-term neurological recovery after spinal cord injury.
    Lee JY; Choi HY; Ahn HJ; Ju BG; Yune TY
    Am J Pathol; 2014 Nov; 184(11):2985-3000. PubMed ID: 25325922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic Acid Prevents Disruption of Blood-Spinal Cord Barrier by Inducing Autophagic Flux After Spinal Cord Injury.
    Zhou Y; Zheng B; Ye L; Zhang H; Zhu S; Zheng X; Xia Q; He Z; Wang Q; Xiao J; Xu H
    Neurochem Res; 2016 Apr; 41(4):813-25. PubMed ID: 26582233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.