These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 19226388)
1. Quantification of conidial density of Aspergillus flavus and A. parasiticus in soil from almond orchards using real-time PCR. Luo Y; Gao W; Doster M; Michailides TJ J Appl Microbiol; 2009 May; 106(5):1649-60. PubMed ID: 19226388 [TBL] [Abstract][Full Text] [Related]
2. PCR-restriction fragment length analysis of aflR gene for differentiation and detection of Aspergillus flavus and Aspergillus parasiticus in maize. Somashekar D; Rati ER; Chandrashekar A Int J Food Microbiol; 2004 May; 93(1):101-7. PubMed ID: 15135586 [TBL] [Abstract][Full Text] [Related]
3. Specific detection of Aspergillus parasiticus in wheat flour using a highly sensitive PCR assay. Sardiñas N; Vázquez C; Gil-Serna J; González-Jaen MT; Patiño B Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Jun; 27(6):853-8. PubMed ID: 20486001 [TBL] [Abstract][Full Text] [Related]
4. Differentiation between Aspergillus flavus and Aspergillus parasiticus from pure culture and aflatoxin-contaminated grapes using PCR-RFLP analysis of aflR-aflJ intergenic spacer. El Khoury A; Atoui A; Rizk T; Lteif R; Kallassy M; Lebrihi A J Food Sci; 2011 May; 76(4):M247-53. PubMed ID: 22417364 [TBL] [Abstract][Full Text] [Related]
5. Comparison of soil fungal community structure in different peanut rotation sequences using ribosomal intergenic spacer analysis in relation to aflatoxin-producing fungi. Sudini H; Arias CR; Liles MR; Bowen KL; Huettel RN Phytopathology; 2011 Jan; 101(1):52-7. PubMed ID: 20822431 [TBL] [Abstract][Full Text] [Related]
6. Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR. Castrillo LA; Thomsen L; Juneja P; Hajek AE Mycol Res; 2007 Mar; 111(Pt 3):324-31. PubMed ID: 17363233 [TBL] [Abstract][Full Text] [Related]
7. Detection and quantification of Aspergillus section Flavi spp. in stored peanuts by real-time PCR of nor-1 gene, and effects of storage conditions on aflatoxin production. Passone MA; Rosso LC; Ciancio A; Etcheverry M Int J Food Microbiol; 2010 Apr; 138(3):276-81. PubMed ID: 20153541 [TBL] [Abstract][Full Text] [Related]
8. Aflatoxin-producing Aspergillus species from Thailand. Ehrlich KC; Kobbeman K; Montalbano BG; Cotty PJ Int J Food Microbiol; 2007 Mar; 114(2):153-9. PubMed ID: 17055099 [TBL] [Abstract][Full Text] [Related]
9. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes. Selma MV; Martínez-Culebras PV; Aznar R Int J Food Microbiol; 2008 Feb; 122(1-2):126-34. PubMed ID: 18160163 [TBL] [Abstract][Full Text] [Related]
10. Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus. Ramirez-Prado JH; Moore GG; Horn BW; Carbone I Fungal Genet Biol; 2008 Sep; 45(9):1292-9. PubMed ID: 18652906 [TBL] [Abstract][Full Text] [Related]
11. Highly sensitive PCR-based detection specific to Aspergillus flavus. González-Salgado A; González-Jaén T; Vázquez C; Patiño B Methods Mol Biol; 2011; 739():211-6. PubMed ID: 21567331 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive PCR-based detection method specific for Aspergillus flavus in wheat flour. González-Salgado A; González-Jaén T; Vázquez C; Patiño B Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jun; 25(6):758-64. PubMed ID: 18484303 [TBL] [Abstract][Full Text] [Related]
13. Specific detection and quantification of Aspergillus flavus and Aspergillus parasiticus in wheat flour by SYBR® Green quantitative PCR. Sardiñas N; Vázquez C; Gil-Serna J; González-Jaén MT; Patiño B Int J Food Microbiol; 2011 Jan; 145(1):121-5. PubMed ID: 21216481 [TBL] [Abstract][Full Text] [Related]
14. Molecular detection and identification of Aspergillus spp. from clinical samples using real-time PCR. Ramírez M; Castro C; Palomares JC; Torres MJ; Aller AI; Ruiz M; Aznar J; Martín-Mazuelos E Mycoses; 2009 Mar; 52(2):129-34. PubMed ID: 18643921 [TBL] [Abstract][Full Text] [Related]
15. Molecular strategy for identification in Aspergillus section Flavi. Godet M; Munaut F FEMS Microbiol Lett; 2010 Mar; 304(2):157-68. PubMed ID: 20377644 [TBL] [Abstract][Full Text] [Related]
16. Rapid detection of aflatoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification. Luo J; Vogel RF; Niessen L Food Microbiol; 2014 Dec; 44():142-8. PubMed ID: 25084656 [TBL] [Abstract][Full Text] [Related]
17. Rapid detection of common pathogenic Aspergillus species by a novel real-time PCR approach. Faber J; Moritz N; Henninger N; Zepp F; Knuf M Mycoses; 2009 May; 52(3):228-33. PubMed ID: 18643890 [TBL] [Abstract][Full Text] [Related]
18. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. Alaei H; Baeyen S; Maes M; Höfte M; Heungens K J Microbiol Methods; 2009 Feb; 76(2):136-45. PubMed ID: 18940207 [TBL] [Abstract][Full Text] [Related]
19. Real-time PCR for detection of the Aspergillus genus. Goebes MD; Hildemann LM; Kujundzic E; Hernandez M J Environ Monit; 2007 Jun; 9(6):599-609. PubMed ID: 17554432 [TBL] [Abstract][Full Text] [Related]
20. PCR detection assays for the ochratoxin-producing Aspergillus carbonarius and Aspergillus ochraceus species. Patiño B; González-Salgado A; González-Jaén M; Vázquez C Int J Food Microbiol; 2005 Oct; 104(2):207-14. PubMed ID: 15967531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]