BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19226388)

  • 1. Quantification of conidial density of Aspergillus flavus and A. parasiticus in soil from almond orchards using real-time PCR.
    Luo Y; Gao W; Doster M; Michailides TJ
    J Appl Microbiol; 2009 May; 106(5):1649-60. PubMed ID: 19226388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCR-restriction fragment length analysis of aflR gene for differentiation and detection of Aspergillus flavus and Aspergillus parasiticus in maize.
    Somashekar D; Rati ER; Chandrashekar A
    Int J Food Microbiol; 2004 May; 93(1):101-7. PubMed ID: 15135586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific detection of Aspergillus parasiticus in wheat flour using a highly sensitive PCR assay.
    Sardiñas N; Vázquez C; Gil-Serna J; González-Jaen MT; Patiño B
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Jun; 27(6):853-8. PubMed ID: 20486001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation between Aspergillus flavus and Aspergillus parasiticus from pure culture and aflatoxin-contaminated grapes using PCR-RFLP analysis of aflR-aflJ intergenic spacer.
    El Khoury A; Atoui A; Rizk T; Lteif R; Kallassy M; Lebrihi A
    J Food Sci; 2011 May; 76(4):M247-53. PubMed ID: 22417364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of soil fungal community structure in different peanut rotation sequences using ribosomal intergenic spacer analysis in relation to aflatoxin-producing fungi.
    Sudini H; Arias CR; Liles MR; Bowen KL; Huettel RN
    Phytopathology; 2011 Jan; 101(1):52-7. PubMed ID: 20822431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR.
    Castrillo LA; Thomsen L; Juneja P; Hajek AE
    Mycol Res; 2007 Mar; 111(Pt 3):324-31. PubMed ID: 17363233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and quantification of Aspergillus section Flavi spp. in stored peanuts by real-time PCR of nor-1 gene, and effects of storage conditions on aflatoxin production.
    Passone MA; Rosso LC; Ciancio A; Etcheverry M
    Int J Food Microbiol; 2010 Apr; 138(3):276-81. PubMed ID: 20153541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aflatoxin-producing Aspergillus species from Thailand.
    Ehrlich KC; Kobbeman K; Montalbano BG; Cotty PJ
    Int J Food Microbiol; 2007 Mar; 114(2):153-9. PubMed ID: 17055099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes.
    Selma MV; Martínez-Culebras PV; Aznar R
    Int J Food Microbiol; 2008 Feb; 122(1-2):126-34. PubMed ID: 18160163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus.
    Ramirez-Prado JH; Moore GG; Horn BW; Carbone I
    Fungal Genet Biol; 2008 Sep; 45(9):1292-9. PubMed ID: 18652906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive PCR-based detection specific to Aspergillus flavus.
    González-Salgado A; González-Jaén T; Vázquez C; Patiño B
    Methods Mol Biol; 2011; 739():211-6. PubMed ID: 21567331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive PCR-based detection method specific for Aspergillus flavus in wheat flour.
    González-Salgado A; González-Jaén T; Vázquez C; Patiño B
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Jun; 25(6):758-64. PubMed ID: 18484303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific detection and quantification of Aspergillus flavus and Aspergillus parasiticus in wheat flour by SYBR® Green quantitative PCR.
    Sardiñas N; Vázquez C; Gil-Serna J; González-Jaén MT; Patiño B
    Int J Food Microbiol; 2011 Jan; 145(1):121-5. PubMed ID: 21216481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular detection and identification of Aspergillus spp. from clinical samples using real-time PCR.
    Ramírez M; Castro C; Palomares JC; Torres MJ; Aller AI; Ruiz M; Aznar J; Martín-Mazuelos E
    Mycoses; 2009 Mar; 52(2):129-34. PubMed ID: 18643921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular strategy for identification in Aspergillus section Flavi.
    Godet M; Munaut F
    FEMS Microbiol Lett; 2010 Mar; 304(2):157-68. PubMed ID: 20377644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of aflatoxin producing fungi in food by real-time quantitative loop-mediated isothermal amplification.
    Luo J; Vogel RF; Niessen L
    Food Microbiol; 2014 Dec; 44():142-8. PubMed ID: 25084656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid detection of common pathogenic Aspergillus species by a novel real-time PCR approach.
    Faber J; Moritz N; Henninger N; Zepp F; Knuf M
    Mycoses; 2009 May; 52(3):228-33. PubMed ID: 18643890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR.
    Alaei H; Baeyen S; Maes M; Höfte M; Heungens K
    J Microbiol Methods; 2009 Feb; 76(2):136-45. PubMed ID: 18940207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time PCR for detection of the Aspergillus genus.
    Goebes MD; Hildemann LM; Kujundzic E; Hernandez M
    J Environ Monit; 2007 Jun; 9(6):599-609. PubMed ID: 17554432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCR detection assays for the ochratoxin-producing Aspergillus carbonarius and Aspergillus ochraceus species.
    Patiño B; González-Salgado A; González-Jaén M; Vázquez C
    Int J Food Microbiol; 2005 Oct; 104(2):207-14. PubMed ID: 15967531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.