These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 19226456)

  • 1. Long-term surveillance of sulfate-reducing bacteria in highly saline industrial wastewater evaporation ponds.
    Ben-Dov E; Kushmaro A; Brenner A
    Saline Syst; 2009 Feb; 5():2. PubMed ID: 19226456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes.
    Ben-Dov E; Brenner A; Kushmaro A
    Microb Ecol; 2007 Oct; 54(3):439-51. PubMed ID: 17351812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in microbial diversity in industrial wastewater evaporation ponds following artificial salination.
    Ben-Dov E; Shapiro OH; Gruber R; Brenner A; Kushmaro A
    FEMS Microbiol Ecol; 2008 Nov; 66(2):437-46. PubMed ID: 18647354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity and community pattern of sulfate-reducing bacteria in piglet gut.
    Ran S; Mu C; Zhu W
    J Anim Sci Biotechnol; 2019; 10():40. PubMed ID: 31110701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate reducing bacterial community and in situ activity in mature fine tailings analyzed by real time qPCR and microsensor.
    Liu H; Tan S; Yu T; Liu Y
    J Environ Sci (China); 2016 Jun; 44():141-147. PubMed ID: 27266310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Rapid quantitative detection of sulfate reducing bacteria in oil field].
    Wei L; Ma F; Wang JH; Zhao LJ
    Huan Jing Ke Xue; 2007 Feb; 28(2):441-4. PubMed ID: 17489214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fish growth enhances microbial sulfur cycling in aquaculture pond sediments.
    Zhang K; Zheng X; He Z; Yang T; Shu L; Xiao F; Wu Y; Wang B; Li Z; Chen P; Yan Q
    Microb Biotechnol; 2020 Sep; 13(5):1597-1610. PubMed ID: 32940416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes.
    Foti M; Sorokin DY; Lomans B; Mussman M; Zacharova EE; Pimenov NV; Kuenen JG; Muyzer G
    Appl Environ Microbiol; 2007 Apr; 73(7):2093-100. PubMed ID: 17308191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the sulfate-reducing bacterial population associated with stored swine slurry.
    Cook KL; Whitehead TR; Spence C; Cotta MA
    Anaerobe; 2008 Jun; 14(3):172-80. PubMed ID: 18457964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and comparison of SYBR Green quantitative real-time PCR assays for detection and enumeration of sulfate-reducing bacteria in stored swine manure.
    Spence C; Whitehead TR; Cotta MA
    J Appl Microbiol; 2008 Dec; 105(6):2143-52. PubMed ID: 19120660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of Sulfate-Reducing Bacteria Community Structure in Surface Sediment of a Seasonally Hypoxic Enclosed Bay.
    Mori F; Umezawa Y; Kondo R; Wada M
    Microbes Environ; 2018 Dec; 33(4):378-384. PubMed ID: 30449831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance and diversity of sulfate-reducing bacteria in the sediment of the Zhou Cun drinking water reservoir in Eastern China.
    Yang X; Huang TL; Guo L; Xia C; Zhang HH; Zhou SL
    Genet Mol Res; 2015 May; 14(2):5830-44. PubMed ID: 26125782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic carbon fixation by sulfate-reducing bacteria in the Black Sea water column.
    Neretin LN; Abed RM; Schippers A; Schubert CJ; Kohls K; Kuypers MM
    Environ Microbiol; 2007 Dec; 9(12):3019-24. PubMed ID: 17991030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers.
    Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G
    Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic diversity of sulfate-reducing bacteria of sediments of Chilika Lake, India, determined through analysis of the dissimilatory sulfite reductase (
    Tadinada SSJ; Kamidi R; Dutta S; Chintalapati S; Chintalapati VR
    3 Biotech; 2019 Apr; 9(4):134. PubMed ID: 30863713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promotion of Ni2+ removal by masking toxicity to sulfate-reducing bacteria: addition of citrate.
    Qian J; Zhu X; Tao Y; Zhou Y; He X; Li D
    Int J Mol Sci; 2015 Apr; 16(4):7932-43. PubMed ID: 25860948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments.
    Zhou J; Xing J
    Water Res; 2021 Aug; 201():117354. PubMed ID: 34157573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.