These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Simulation of adsorption of DNA on carbon nanotubes. Zhao X; Johnson JK J Am Chem Soc; 2007 Aug; 129(34):10438-45. PubMed ID: 17676840 [TBL] [Abstract][Full Text] [Related]
8. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Crouzier T; Nimmagadda A; Nollert MU; McFetridge PS Langmuir; 2008 Nov; 24(22):13173-81. PubMed ID: 18947245 [TBL] [Abstract][Full Text] [Related]
9. Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices. Dieckmann GR; Dalton AB; Johnson PA; Razal J; Chen J; Giordano GM; Muñoz E; Musselman IH; Baughman RH; Draper RK J Am Chem Soc; 2003 Feb; 125(7):1770-7. PubMed ID: 12580602 [TBL] [Abstract][Full Text] [Related]
10. Importance of aromatic content for peptide/single-walled carbon nanotube interactions. Zorbas V; Smith AL; Xie H; Ortiz-Acevedo A; Dalton AB; Dieckmann GR; Draper RK; Baughman RH; Musselman IH J Am Chem Soc; 2005 Sep; 127(35):12323-8. PubMed ID: 16131210 [TBL] [Abstract][Full Text] [Related]
11. Influence of alternating L-/D-amino acid chiralities and disulfide bond geometry on the capacity of cysteine-containing reversible cyclic peptides to disperse carbon nanotubes. Becraft EJ; Klimenko AS; Dieckmann GR Biopolymers; 2009; 92(3):212-21. PubMed ID: 19283829 [TBL] [Abstract][Full Text] [Related]
12. Effects of cosolvents on the hydration of carbon nanotubes. Yang L; Gao YQ J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390 [TBL] [Abstract][Full Text] [Related]
13. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold. Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020 [TBL] [Abstract][Full Text] [Related]
14. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study. Lin S; Blankschtein D J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001 [TBL] [Abstract][Full Text] [Related]
15. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Sayes CM; Liang F; Hudson JL; Mendez J; Guo W; Beach JM; Moore VC; Doyle CD; West JL; Billups WE; Ausman KD; Colvin VL Toxicol Lett; 2006 Feb; 161(2):135-42. PubMed ID: 16229976 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. Kuang Z; Kim SN; Crookes-Goodson WJ; Farmer BL; Naik RR ACS Nano; 2010 Jan; 4(1):452-8. PubMed ID: 20038158 [TBL] [Abstract][Full Text] [Related]
17. Single-walled carbon nanotube binding peptides: probing tryptophan's importance by unnatural amino acid substitution. Su Z; Mui K; Daub E; Leung T; Honek J J Phys Chem B; 2007 Dec; 111(51):14411-7. PubMed ID: 18062679 [TBL] [Abstract][Full Text] [Related]
18. Dynamic mechanism of collagen-like peptide encapsulated into carbon nanotubes. Kang Y; Wang Q; Liu YC; Wu T; Chen Q; Guan WJ J Phys Chem B; 2008 Apr; 112(15):4801-7. PubMed ID: 18366213 [TBL] [Abstract][Full Text] [Related]
19. Atomic force microscopy measurements of peptide-wrapped single-walled carbon nanotube diameters. Poenitzsch VZ; Musselman IH Microsc Microanal; 2006 Jun; 12(3):221-7. PubMed ID: 17481358 [TBL] [Abstract][Full Text] [Related]
20. Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids. Lee H J Phys Chem B; 2013 Feb; 117(5):1337-44. PubMed ID: 23214434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]