BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19226633)

  • 1. On the behavior of HPMC/Theophylline matrices for controlled drug delivery.
    Barba AA; d'Amore M; Cascone S; Chirico S; Lamberti G; Titomanlio G
    J Pharm Sci; 2009 Nov; 98(11):4100-10. PubMed ID: 19226633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion.
    Lamberti G; Galdi I; Barba AA
    Int J Pharm; 2011 Apr; 407(1-2):78-86. PubMed ID: 21256940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the drug release from hydrogel-based matrices.
    Caccavo D; Cascone S; Lamberti G; Barba AA
    Mol Pharm; 2015 Feb; 12(2):474-83. PubMed ID: 25495793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of theophylline and carbamazepine from matrix tablets--consequences of HPMC chemical heterogeneity.
    Viridén A; Abrahmsén-Alami S; Wittgren B; Larsson A
    Eur J Pharm Biopharm; 2011 Aug; 78(3):470-9. PubMed ID: 21316446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled drug release from hydrogel-based matrices: Experiments and modeling.
    Caccavo D; Cascone S; Lamberti G; Barba AA
    Int J Pharm; 2015; 486(1-2):144-52. PubMed ID: 25827589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release.
    Gao P; Skoug JW; Nixon PR; Ju TR; Stemm NL; Sung KC
    J Pharm Sci; 1996 Jul; 85(7):732-40. PubMed ID: 8818998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix tablets: the effect of hydroxypropyl methylcellulose/anhydrous dibasic calcium phosphate ratio on the release rate of a water-soluble drug through the gastrointestinal tract I. In vitro tests.
    Mamani PL; Ruiz-Caro R; Veiga MD
    AAPS PharmSciTech; 2012 Dec; 13(4):1073-83. PubMed ID: 22907778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. II. Evaluation of a possible swelling-controlled drug release mechanism using dimensionless analysis.
    Ferrero C; Massuelle D; Doelker E
    J Control Release; 2010 Jan; 141(2):223-33. PubMed ID: 19766681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compaction properties, drug release kinetics and fronts movement studies from matrices combining mixtures of swellable and inert polymers: effect of HPMC of different viscosity grades.
    Escudero JJ; Ferrero C; Jiménez-Castellanos MR
    Int J Pharm; 2008 Mar; 351(1-2):61-73. PubMed ID: 17996408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and modeling of swelling and erosion behavior for pure HPMC tablet.
    Chirico S; Dalmoro A; Lamberti G; Russo G; Titomanlio G
    J Control Release; 2007 Sep; 122(2):181-8. PubMed ID: 17706830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the "sequential layer" model).
    Siepmann J; Peppas NA
    Pharm Res; 2000 Oct; 17(10):1290-8. PubMed ID: 11145237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified drug release of poloxamer matrix by including water-soluble and water-insoluble polymer.
    Gonzalez YM; Ghaly ES
    Drug Dev Ind Pharm; 2010 Jan; 36(1):64-71. PubMed ID: 19747067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of agitation sequence and ionic strength on in vitro drug release from hypromellose (E4M and K4M) ER matrices--the use of the USP III apparatus.
    Asare-Addo K; Kaialy W; Levina M; Rajabi-Siahboomi A; Ghori MU; Supuk E; Laity PR; Conway BR; Nokhodchi A
    Colloids Surf B Biointerfaces; 2013 Apr; 104():54-60. PubMed ID: 23298588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of hydroxypropyl methylcellulose matrix systems as swellable gastro-retentive drug delivery systems (GRDDS).
    Matharu AS; Motto MG; Patel MR; Simonelli AP; Dave RH
    J Pharm Sci; 2011 Jan; 100(1):150-63. PubMed ID: 20572054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrices containing NaCMC and HPMC 2. Swelling and release mechanism study.
    Conti S; Maggi L; Segale L; Ochoa Machiste E; Conte U; Grenier P; Vergnault G
    Int J Pharm; 2007 Mar; 333(1-2):143-51. PubMed ID: 17240091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets.
    Siepmann J; Podual K; Sriwongjanya M; Peppas NA; Bodmeier R
    J Pharm Sci; 1999 Jan; 88(1):65-72. PubMed ID: 9874704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer erosion and drug release characterization of hydroxypropyl methylcellulose matrices.
    Reynolds TD; Gehrke SH; Hussain AS; Shenouda LS
    J Pharm Sci; 1998 Sep; 87(9):1115-23. PubMed ID: 9724564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug release from hydrophilic matrices. 1. New scaling laws for predicting polymer and drug release based on the polymer disentanglement concentration and the diffusion layer.
    Ju RT; Nixon PR; Patel MV
    J Pharm Sci; 1995 Dec; 84(12):1455-63. PubMed ID: 8748329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices.
    Ghori MU; Ginting G; Smith AM; Conway BR
    Int J Pharm; 2014 Apr; 465(1-2):405-12. PubMed ID: 24560637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. III. Critical use of thermodynamic parameters of activation for modeling the water penetration and drug release processes.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2013 Sep; 170(2):175-82. PubMed ID: 23727289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.