BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 19226749)

  • 1. Phenotypical differences among B. cinerea isolates from ornamental plants.
    Martínez JA; Valdés R; Vicente MJ; Bañón S
    Commun Agric Appl Biol Sci; 2008; 73(2):121-9. PubMed ID: 19226749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent growth of Botrytis cinerea isolates from potted plants.
    Martínez JA; Gómez-Bellot MJ; Bañón S
    Commun Agric Appl Biol Sci; 2009; 74(3):729-38. PubMed ID: 20222557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of indole-3-acetic acid on Botrytis cinerea isolates obtained from potted plants.
    Martínez JA; Valdés R; Gómez-Bellot MJ; Bañón S
    Commun Agric Appl Biol Sci; 2011; 76(4):643-51. PubMed ID: 22702183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of paclobutrazol on Botrytis cinerea isolates obtained from potted plants.
    Martínez JA; Valdés R; Bañón S
    Commun Agric Appl Biol Sci; 2010; 75(4):709-19. PubMed ID: 21534481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes.
    Saito S; Suzuki S; Takayanagi T
    Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Botrytis fabiopsis, a new species causing chocolate spot of broad bean in central China.
    Zhang J; Wu MD; Li GQ; Yang L; Yu L; Jiang DH; Huang HC; Zhuang WY
    Mycologia; 2010; 102(5):1114-26. PubMed ID: 20943510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Botrytis caroliniana, a new species isolated from blackberry in South Carolina.
    Li X; Kerrigan J; Chai W; Schnabel G
    Mycologia; 2012; 104(3):650-8. PubMed ID: 22314589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea.
    Walker AS; Gautier AL; Confais J; Martinho D; Viaud M; Le P Cheur P; Dupont J; Fournier E
    Phytopathology; 2011 Dec; 101(12):1433-45. PubMed ID: 21830954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT
    J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry.
    Ishii H; Fountaine J; Chung WH; Kansako M; Nishimura K; Takahashi K; Oshima M
    Pest Manag Sci; 2009 Aug; 65(8):916-22. PubMed ID: 19444805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa.
    Allen TW; Burpee LL; Buck JW
    Can J Microbiol; 2004 Dec; 50(12):1041-8. PubMed ID: 15714235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Characterization of Botrytis Blossom Blight of Japanese Plums Caused by Botrytis cinerea and B. prunorum sp. nov. in Chile.
    Ferrada EE; Latorre BA; Zoffoli JP; Castillo A
    Phytopathology; 2016 Feb; 106(2):155-65. PubMed ID: 26474331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea.
    Soylu EM; Kurt S; Soylu S
    Int J Food Microbiol; 2010 Oct; 143(3):183-9. PubMed ID: 20826038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates.
    Kumari S; Tayal P; Sharma E; Kapoor R
    Microbiol Res; 2014 Nov; 169(11):862-72. PubMed ID: 24767170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?
    Chagué V; Danit LV; Siewers V; Schulze-Gronover C; Tudzynski P; Tudzynski B; Sharon A
    Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple.
    Kim YK; Xiao CL
    Phytopathology; 2011 Nov; 101(11):1385-91. PubMed ID: 21692646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry.
    Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Necrotrophic mycoparasitism of Botrytis cinerea by cellulolytic and ligninocellulolytic Basidiomycetes.
    White GJ; Traquair JA
    Can J Microbiol; 2006 Jun; 52(6):508-18. PubMed ID: 16788718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes.
    Myung K; Hamilton-Kemp TR; Archbold DD
    J Agric Food Chem; 2007 Mar; 55(6):2182-8. PubMed ID: 17323971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum.
    He L; Liu Y; Mustapha A; Lin M
    Microbiol Res; 2011 Mar; 166(3):207-15. PubMed ID: 20630731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.