These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
595 related articles for article (PubMed ID: 19226801)
1. Laboratory evaluation of Bacillus thuringiensis (Vectobac WDG) against mosquito larvae, Culex pipiens and Culiseta longiareolata. Boudjelida H; Aïssaoui L; Bouaziz A; Smagghe G; Soltani N Commun Agric Appl Biol Sci; 2008; 73(3):603-9. PubMed ID: 19226801 [TBL] [Abstract][Full Text] [Related]
2. Factors affecting the toxicity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi (Diptera: Chironomidae). Stevens MM; Akhurst RJ; Clifton MA; Hughes PA J Invertebr Pathol; 2004 Jul; 86(3):104-10. PubMed ID: 15261774 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of halofenozide against prey mosquito larvae Culex pipiens and the predator fish Gambusia affinis: impact on growth and enzymatic activities. Soltani N; Chouahda S; Smagghe G Commun Agric Appl Biol Sci; 2008; 73(3):659-66. PubMed ID: 19226809 [TBL] [Abstract][Full Text] [Related]
4. Insecticidal activity of a nonsteroidal moulting hormone agonist on mosquito larvae and effects on ecdysteroid amounts. Boudjelida H; Bouaziz A; Smagghe G; Soltani N Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(3):657-63. PubMed ID: 12696434 [TBL] [Abstract][Full Text] [Related]
5. [Aedes albopictus (Diptera: Culicidae) in Rome: experimental study of relevant control strategy parameters]. Pombi M; Costantini C; della Torre A Parassitologia; 2003 Jun; 45(2):97-102. PubMed ID: 15267004 [TBL] [Abstract][Full Text] [Related]
6. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species. Nayar JK; Knight JW; Ali A; Carlson DB; O'Bryan PD J Am Mosq Control Assoc; 1999 Mar; 15(1):32-42. PubMed ID: 10342266 [TBL] [Abstract][Full Text] [Related]
7. Documentation of high-level bacillus Sphaericus 2362 resistance in field populations of Culex quinquefasciatus breeding in polluted water in Thailand. Su T; Mulla MS J Am Mosq Control Assoc; 2004 Dec; 20(4):405-11. PubMed ID: 15669382 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of three microbial formulations against Culex pipiens pipiens larvae in irrigation fields in Wroclaw, Poland. Rydzanicz K; Lonc E; Kiewra D; Dechant P; Krause S; Becker N J Am Mosq Control Assoc; 2009 Jun; 25(2):140-8. PubMed ID: 19653495 [TBL] [Abstract][Full Text] [Related]
9. Initial and residual activity of VectoBac 12 AS, VectoBac WDG, and VectoLex WDG for control of mosquitoes in Ararat Valley, Turkey. Aldemir A J Am Mosq Control Assoc; 2009 Mar; 25(1):113-6. PubMed ID: 19432078 [TBL] [Abstract][Full Text] [Related]
10. Comparative delta-endotoxins of Bacillus thuringiensis against mosquito vectors (Aedes aegypti and Culex pipiens). Lonc E; Kucińska J; Rydzanicz K Acta Microbiol Pol; 2003; 52(3):293-300. PubMed ID: 14743982 [TBL] [Abstract][Full Text] [Related]
11. Bioassay of some Egyptian isolates of Bacillus thuringiensis against Culex pipiens (Diptera: Culicidae). Zayed ME; Bream AS Commun Agric Appl Biol Sci; 2004; 69(3):219-28. PubMed ID: 15759417 [TBL] [Abstract][Full Text] [Related]
12. Indoor thermal fogging against vector mosquitoes with two Bacillus thuringiensis israelensis formulations, Vectobac ABG 6511 water-dispersible granules and Vectobac 12AS liquid. Yap HH; Lee YW; Zairi J J Am Mosq Control Assoc; 2002 Mar; 18(1):52-6. PubMed ID: 11998931 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. Shililu JI; Tewolde GM; Brantly E; Githure JI; Mbogo CM; Beier JC; Fusco R; Novak RJ J Am Mosq Control Assoc; 2003 Sep; 19(3):251-8. PubMed ID: 14524547 [TBL] [Abstract][Full Text] [Related]
14. Comparative bioassays of Bacillus thuringiensis H-14 formulations against four species of mosquitoes in Malaysia. Foo AE; Yap HH Southeast Asian J Trop Med Public Health; 1982 Jun; 13(2):206-10. PubMed ID: 6128794 [TBL] [Abstract][Full Text] [Related]
15. Pyrethroid tolerance in Culex pipiens pipiens var molestus from Marin County, California. McAbee RD; Kang KD; Stanich MA; Christiansen JA; Wheelock CE; Inman AD; Hammock BD; Cornel AJ Pest Manag Sci; 2004 Apr; 60(4):359-68. PubMed ID: 15119598 [TBL] [Abstract][Full Text] [Related]
16. Non-larvicidal effects of Bacillus thuringiensis israelensis and Bacillus sphaericus on oviposition and adult mortality of Culex quinquefasciatus Say (Diptera: Culicidae). Zahiri NS; Mulla MS J Vector Ecol; 2005 Jun; 30(1):155-62. PubMed ID: 16007971 [TBL] [Abstract][Full Text] [Related]
17. [Resistance to the organophosphate insecticides temephos and malathion in Culex pipiens L. (Diptera, Culicidae) from the Adriatic coast near Friuli]. Zamburlini R; Bellantone P Parassitologia; 1993 Dec; 35(1-3):11-5. PubMed ID: 7520564 [TBL] [Abstract][Full Text] [Related]
18. Efficacy of Czechoslovak and Soviet Bacillus thuringiensis (serotype H-14) formulations against mosquito larvae. Rettich F J Hyg Epidemiol Microbiol Immunol; 1987; 31(1):53-63. PubMed ID: 2883232 [TBL] [Abstract][Full Text] [Related]
19. Extended effect of Bacillus thuringiensis H-14 on Culex pipiens adults surviving larval treatment. Hafez GA J Egypt Soc Parasitol; 2000 Aug; 30(2):377-86. PubMed ID: 10946499 [TBL] [Abstract][Full Text] [Related]
20. [Experimental observation of toxic effect of Bacillus thuringiensis var. israelensis against Aedes, Culex and Anopheles larvae]. Li JL; Zhu GD; Zhou HY; Tang JX; Cao J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2014 Feb; 26(1):67-8. PubMed ID: 24800571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]