These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 19226820)
41. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
42. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study. Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732 [TBL] [Abstract][Full Text] [Related]
43. The effects of hedges on spray deposition and on the biological impact of pesticide spray drift. Davis BN; Brown MJ; Frost AJ; Yates TJ; Plant RA Ecotoxicol Environ Saf; 1994 Apr; 27(3):281-93. PubMed ID: 7519547 [TBL] [Abstract][Full Text] [Related]
44. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements. Maertens W; Nuyttens D; Sonck B Commun Agric Appl Biol Sci; 2005; 70(4):989-95. PubMed ID: 16628947 [TBL] [Abstract][Full Text] [Related]
45. Assessment of the risk of dermal exposure to pesticides during treatment with a back-pack sprayer in the presence and absence of vegetation. Kadri Z; Sylla S; Lebeau F; Schiffers B Commun Agric Appl Biol Sci; 2012; 77(4):415-22. PubMed ID: 23885410 [TBL] [Abstract][Full Text] [Related]
46. Sowing simulation tests of a pneumatic drill equipped with systems aimed at reducing the emission of abrasion dust from maize dressed seed. Biocca M; Conte E; Pulcini P; Marinelli E; Pochi D J Environ Sci Health B; 2011; 46(6):438-48. PubMed ID: 21726139 [TBL] [Abstract][Full Text] [Related]
47. Critical points for point source pollution in the Yser catchment area (Flanders-France). Mestdagh I; Maillet-Mezeray J; Calus A; Franssens V; Röttele M Commun Agric Appl Biol Sci; 2008; 73(4):787-97. PubMed ID: 19226829 [TBL] [Abstract][Full Text] [Related]
48. Drift of 10 herbicides after tractor spray application. 1. Secondary drift (evaporation). Carlsen SC; Spliid NH; Svensmark B Chemosphere; 2006 Jul; 64(5):787-94. PubMed ID: 16337992 [TBL] [Abstract][Full Text] [Related]
49. What about upwind buffer zones for aerial applications? Kirk LW; Teske ME; Thistle HW J Agric Saf Health; 2002 Aug; 8(3):333-6. PubMed ID: 12363183 [TBL] [Abstract][Full Text] [Related]
50. Decision support tools for environmentally safe use of pesticides. Doruchowski G; Balsari P; Marucco P; Herbst A; Wehmann HJ; Roettele M; Gil E; Codis S; Pauwelyn E Commun Agric Appl Biol Sci; 2013; 78(2):37-45. PubMed ID: 25145224 [TBL] [Abstract][Full Text] [Related]
51. Optimization of the spray application technology in bay laurel (Laurus nobilis). Nuyttens D; Braekman P; Foque D Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514 [TBL] [Abstract][Full Text] [Related]
52. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes). García-Santos G; Feola G; Nuyttens D; Diaz J J Agric Food Chem; 2016 May; 64(20):3990-8. PubMed ID: 26479088 [TBL] [Abstract][Full Text] [Related]
53. Effect of tank mixed adjuvants on the drift potential of phenmedipham formulations. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2005; 70(4):979-87. PubMed ID: 16628946 [TBL] [Abstract][Full Text] [Related]
54. Spraying performance of umbrella wind-field-type atomization and its application to parameter optimization. Li S; Li J; Zhang R; Yu S; Wang P; Liu H; Yang X Pest Manag Sci; 2024 Feb; 80(2):473-497. PubMed ID: 37794582 [TBL] [Abstract][Full Text] [Related]
55. Estimation of emission fluxes from a horizontal flux budget method, exemplified with determination of pesticide volatilization. Jensen NO; Andersen HV Environ Pollut; 2008 Nov; 156(1):193-8. PubMed ID: 18262316 [TBL] [Abstract][Full Text] [Related]
56. Primary and secondary pesticide drift profiles from a peach orchard. Zivan O; Bohbot-Raviv Y; Dubowski Y Chemosphere; 2017 Jun; 177():303-310. PubMed ID: 28314235 [TBL] [Abstract][Full Text] [Related]
57. Wind tunnel evaluation of several tracer and collection techniques for the measurement of spray drift. Brusselman E; Van Driessen K; Steurbaut W; Gabriels D; Cornelis W; Nuyttens D; Sonck B; Baetens K; Nicolai B; Verboven P; Ramon H Commun Agric Appl Biol Sci; 2004; 69(4):829-36. PubMed ID: 15756877 [TBL] [Abstract][Full Text] [Related]
58. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data. Allwine KJ; Thistle HW; Teske ME; Anhold J Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131 [TBL] [Abstract][Full Text] [Related]
59. Measures to reduce pesticide spray drift in a small aquatic ecosystem in vineyard estate. Vischetti C; Cardinali A; Monaci E; Nicelli M; Ferrari F; Trevisan M; Capri E Sci Total Environ; 2008 Jan; 389(2-3):497-502. PubMed ID: 17936878 [TBL] [Abstract][Full Text] [Related]
60. Pesticide dispersion by spraying under tropical conditions. Langenbach T; Mano D; Campos MM; Cunha ALMC; De Campos TMP J Environ Sci Health B; 2017 Dec; 52(12):843-849. PubMed ID: 28949807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]