These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19227076)

  • 21. Microwave radiometry for continuous non-contact temperature measurements during microwave heating.
    Stephan KD; Pearce JA
    J Microw Power Electromagn Energy; 2005; 40(1):49-61. PubMed ID: 16673833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-Temperature Metallization and Laser Trimming Process for Microwave Dielectric Ceramic Filters.
    Lin JJ; Lin CI; Kao TH; Huang MC
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding microwave heating effects in single mode type cavities-theory and experiment.
    Robinson J; Kingman S; Irvine D; Licence P; Smith A; Dimitrakis G; Obermayer D; Kappe CO
    Phys Chem Chem Phys; 2010 May; 12(18):4750-8. PubMed ID: 20428555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ preparation of silver nanocomposites on cellulosic fibers--microwave vs. conventional heating.
    Breitwieser D; Moghaddam MM; Spirk S; Baghbanzadeh M; Pivec T; Fasl H; Ribitsch V; Kappe CO
    Carbohydr Polym; 2013 Apr; 94(1):677-86. PubMed ID: 23544590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation and extraction of non-thermal effects of strong microwave electric field on dielectric properties of materials based on time modulation and cavity perturbation method.
    Gao Y; Li E; Shi W; Zhang Y; Gao C; Li Y; Long J; Chen L
    Rev Sci Instrum; 2021 Feb; 92(2):024712. PubMed ID: 33648093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating.
    Irfan M; Fuchs M; Glasnov TN; Kappe CO
    Chemistry; 2009 Nov; 15(43):11608-18. PubMed ID: 19774573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.
    Kim KS; Park BG; Jung KH; Kim JW; Jeong MY; Jung SB
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2333-7. PubMed ID: 26413662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions.
    Dallinger D; Irfan M; Suljanovic A; Kappe CO
    J Org Chem; 2010 Aug; 75(15):5278-88. PubMed ID: 20670032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microstructure and electrical properties of microwave-sintered PTC thermistors.
    Fu M; Agrawal D; Fang Y
    J Microw Power Electromagn Energy; 2007; 40(3):133-9. PubMed ID: 17645203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ¹H NMR studies of starch-water interactions during microwave heating.
    Fan D; Ma S; Wang L; Zhao H; Zhao J; Zhang H; Chen W
    Carbohydr Polym; 2013 Sep; 97(2):406-12. PubMed ID: 23911464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applying microwave technology to sintering dental zirconia.
    Almazdi AA; Khajah HM; Monaco EA; Kim H
    J Prosthet Dent; 2012 Nov; 108(5):304-9. PubMed ID: 23107238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid parallel synthesis of polymer-bound enones utilizing microwave-assisted solid-phase chemistry.
    Strohmeier GA; Kappe CO
    J Comb Chem; 2002; 4(2):154-61. PubMed ID: 11886290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microwave sintering process model.
    Peng H; Tinga WR; Sundararaj U; Eadie RL
    J Microw Power Electromagn Energy; 2003; 38(4):243-58. PubMed ID: 15323110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microwave synthesis of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization.
    Jhung SH; Lee JH; Forster PM; Férey G; Cheetham AK; Chang JS
    Chemistry; 2006 Oct; 12(30):7899-905. PubMed ID: 16871506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualization of microwave energy distribution in a multimode microwave cavity using CoCl2 on gypsum plates.
    Dai J; Orsat V; Vijaya Raghavan GS
    J Microw Power Electromagn Energy; 2010; 44(3):144-52. PubMed ID: 21721333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of measured microwave absorption and temperature change for development of a single-mode-type microwave heating thermogravimetry apparatus.
    Karisma AD; Hamaba T; Fukasawa T; Huang AN; Segawa T; Fukui K
    Rev Sci Instrum; 2017 Feb; 88(2):024101. PubMed ID: 28249523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.
    Jung S; Chun SJ; Shon CH
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20301-8. PubMed ID: 27441952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a compact cylindrical reaction cavity for a microwave dielectric heating system.
    Kim M; Kim K
    Rev Sci Instrum; 2012 Mar; 83(3):034703. PubMed ID: 22462944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.