These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 19227447)
1. The control of oxidative phosphorylation in the adrenal gland (Y1) cell line. Murphy JE; Porter RK Adv Exp Med Biol; 2009; 645():35-41. PubMed ID: 19227447 [TBL] [Abstract][Full Text] [Related]
2. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes. Harper ME; Monemdjou S; Ramsey JJ; Weindruch R Am J Physiol; 1998 Aug; 275(2):E197-206. PubMed ID: 9688619 [TBL] [Abstract][Full Text] [Related]
3. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Ainscow EK; Brand MD Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130 [TBL] [Abstract][Full Text] [Related]
4. The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status. Harper ME; Brand MD J Biol Chem; 1993 Jul; 268(20):14850-60. PubMed ID: 8392060 [TBL] [Abstract][Full Text] [Related]
5. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions. Harper ME; Brand MD Can J Physiol Pharmacol; 1994 Aug; 72(8):899-908. PubMed ID: 7834578 [TBL] [Abstract][Full Text] [Related]
6. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015 [TBL] [Abstract][Full Text] [Related]
7. Oxidative phosphorylation by in situ synaptosomal mitochondria from whole brain of young and old rats. Joyce OJ; Farmer MK; Tipton KF; Porter RK J Neurochem; 2003 Aug; 86(4):1032-41. PubMed ID: 12887700 [TBL] [Abstract][Full Text] [Related]
8. Proton leak and control of oxidative phosphorylation in perfused, resting rat skeletal muscle. Rolfe DF; Brand MD Biochim Biophys Acta; 1996 Aug; 1276(1):45-50. PubMed ID: 8764890 [TBL] [Abstract][Full Text] [Related]
9. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria. Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433 [TBL] [Abstract][Full Text] [Related]
10. Theoretical studies on the control of the oxidative phosphorylation system. Korzeniewski B; Froncisz W Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730 [TBL] [Abstract][Full Text] [Related]
11. The contribution of the leak of protons across the mitochondrial inner membrane to standard metabolic rate. Brand MD J Theor Biol; 1990 Jul; 145(2):267-86. PubMed ID: 2169556 [TBL] [Abstract][Full Text] [Related]
12. Measurement of proton leak and electron leak in isolated mitochondria. Affourtit C; Quinlan CL; Brand MD Methods Mol Biol; 2012; 810():165-82. PubMed ID: 22057567 [TBL] [Abstract][Full Text] [Related]
13. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Pesta D; Gnaiger E Methods Mol Biol; 2012; 810():25-58. PubMed ID: 22057559 [TBL] [Abstract][Full Text] [Related]
14. Acute temperature resistance threshold in heart mitochondria: Febrile temperature activates function but exceeding it collapses the membrane barrier. Zukiene R; Nauciene Z; Ciapaite J; Mildaziene V Int J Hyperthermia; 2010 Feb; 26(1):56-66. PubMed ID: 20100053 [TBL] [Abstract][Full Text] [Related]
15. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. Ivanina AV; Kurochkin IO; Leamy L; Sokolova IM J Exp Biol; 2012 Sep; 215(Pt 18):3142-54. PubMed ID: 22660786 [TBL] [Abstract][Full Text] [Related]
17. Causes of differences in respiration rate of hepatocytes from mammals of different body mass. Porter RK; Brand MD Am J Physiol; 1995 Nov; 269(5 Pt 2):R1213-24. PubMed ID: 7503313 [TBL] [Abstract][Full Text] [Related]
18. The effects of methylprednisolone on oxidative phosphorylation in Concanavalin-A-stimulated thymocytes. Top-down elasticity analysis and control analysis. Buttgereit F; Grant A; Müller M; Brand MD Eur J Biochem; 1994 Jul; 223(2):513-9. PubMed ID: 8055921 [TBL] [Abstract][Full Text] [Related]
19. Use of top-down elasticity analysis to identify sites of thyroid hormone-induced thermogenesis. Harper ME; Brand MD Proc Soc Exp Biol Med; 1995 Mar; 208(3):228-37. PubMed ID: 7878061 [TBL] [Abstract][Full Text] [Related]