These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19227506)

  • 1. Object avoidance during locomotion.
    McVea DA; Pearson KG
    Adv Exp Med Biol; 2009; 629():293-315. PubMed ID: 19227506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory.
    Lajoie K; Andujar JE; Pearson K; Drew T
    J Neurophysiol; 2010 Apr; 103(4):2234-54. PubMed ID: 20386041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory-Guided Stumbling Correction in the Hindlimb of Quadrupeds Relies on Parietal Area 5.
    Wong C; Wong G; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Feb; 28(2):561-573. PubMed ID: 28013232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of Parietal Cortex to the Working Memory of an Obstacle Acquired Visually or Tactilely in the Locomoting Cat.
    Wong C; Pearson KG; Lomber SG
    Cereb Cortex; 2018 Sep; 28(9):3143-3158. PubMed ID: 28981640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Updating neural representations of objects during walking.
    Pearson K; Gramlich R
    Ann N Y Acad Sci; 2010 Jun; 1198():1-9. PubMed ID: 20536915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-lasting working memories of obstacles established by foreleg stepping in walking cats require area 5 of the posterior parietal cortex.
    McVea DA; Taylor AJ; Pearson KG
    J Neurosci; 2009 Jul; 29(29):9396-404. PubMed ID: 19625530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-lasting memories of obstacles guide leg movements in the walking cat.
    McVea DA; Pearson KG
    J Neurosci; 2006 Jan; 26(4):1175-8. PubMed ID: 16436604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of motor and visual information in the parietal area 5 during locomotion.
    Beloozerova IN; Sirota MG
    J Neurophysiol; 2003 Aug; 90(2):961-71. PubMed ID: 12904498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical mechanisms involved in visuomotor coordination during precision walking.
    Drew T; Andujar JE; Lajoie K; Yakovenko S
    Brain Res Rev; 2008 Jan; 57(1):199-211. PubMed ID: 17935789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Cooling-induced Deactivations to Study Cortical Contributions to Obstacle Memory in the Walking Cat.
    Wong C; Lomber SG
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion.
    Xing D; Truccolo W; Borton DA
    J Neurosci; 2022 Dec; 42(49):9142-9157. PubMed ID: 36283830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for obstacle avoidance during walking in the cat.
    Chu KMI; Seto SH; Beloozerova IN; Marlinski V
    J Neurophysiol; 2017 Aug; 118(2):817-831. PubMed ID: 28356468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.
    Morton SM; Dordevic GS; Bastian AJ
    Exp Brain Res; 2004 May; 156(2):149-63. PubMed ID: 14758452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A contribution of area 5 of the posterior parietal cortex to the planning of visually guided locomotion: limb-specific and limb-independent effects.
    Andujar JE; Lajoie K; Drew T
    J Neurophysiol; 2010 Feb; 103(2):986-1006. PubMed ID: 20018828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable Delay Period Representations in the Posterior Parietal Cortex Facilitate Working-Memory-Guided Obstacle Negotiation.
    Wong C; Lomber SG
    Curr Biol; 2019 Jan; 29(1):70-80.e3. PubMed ID: 30581021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task.
    Marigold DS; Weerdesteyn V; Patla AE; Duysens J
    Exp Brain Res; 2007 Jan; 176(1):32-42. PubMed ID: 16819646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential activity-dependent development of corticospinal control of movement and final limb position during visually guided locomotion.
    Friel KM; Drew T; Martin JH
    J Neurophysiol; 2007 May; 97(5):3396-406. PubMed ID: 17376849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Healthy young adults implement distinctive avoidance strategies while walking and circumventing virtual human vs. non-human obstacles in a virtual environment.
    Souza Silva W; Aravind G; Sangani S; Lamontagne A
    Gait Posture; 2018 Mar; 61():294-300. PubMed ID: 29413800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.