These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19227524)

  • 1. A mathematical approach to the mechanical capabilities of limbs and fingers.
    Valero-Cuevas FJ
    Adv Exp Med Biol; 2009; 629():619-33. PubMed ID: 19227524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle mechanics and neuromuscular control.
    Hof AL
    J Biomech; 2003 Jul; 36(7):1031-8. PubMed ID: 12757812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimality in neuromuscular systems.
    Theodorou E; Valero-Cuevas FJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4510-6. PubMed ID: 21095783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The internal model and the leading joint hypothesis: implications for control of multi-joint movements.
    Dounskaia N
    Exp Brain Res; 2005 Sep; 166(1):1-16. PubMed ID: 16132966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic modeling and identification of the human neuromuscular network.
    Nakamura Y; Yamane K; Murai A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():99-105. PubMed ID: 17946784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle redundancy does not imply robustness to muscle dysfunction.
    Kutch JJ; Valero-Cuevas FJ
    J Biomech; 2011 Apr; 44(7):1264-70. PubMed ID: 21420091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrative approach to the biomechanical function and neuromuscular control of the fingers.
    Valero-Cuevas FJ
    J Biomech; 2005 Apr; 38(4):673-84. PubMed ID: 15713287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neuromuscular transform: the dynamic, nonlinear link between motor neuron firing patterns and muscle contraction in rhythmic behaviors.
    Brezina V; Orekhova IV; Weiss KR
    J Neurophysiol; 2000 Jan; 83(1):207-31. PubMed ID: 10634868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor-unit synchrony within and across compartments of the human flexor digitorum superficialis.
    McIsaac TL; Fuglevand AJ
    J Neurophysiol; 2007 Jan; 97(1):550-6. PubMed ID: 17093112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback control of the limbs position during voluntary rhythmic oscillation.
    Esposti R; Cavallari P; Baldissera F
    Biol Cybern; 2007 Aug; 97(2):123-36. PubMed ID: 17534650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. I.3. Dynamics of human movement.
    Koopman BH
    Stud Health Technol Inform; 2010; 152():27-44. PubMed ID: 20407184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical considerations of lumbricalis behavior in the human finger.
    Thomas DH; Long C; Landsmeer JM
    J Biomech; 1968 Jul; 1(2):107-15. PubMed ID: 16329298
    [No Abstract]   [Full Text] [Related]  

  • 14. A computerized biomechanical model-development of and use in studying gross body actions.
    Chaffin DB
    J Biomech; 1969 Oct; 2(4):429-41. PubMed ID: 16335142
    [No Abstract]   [Full Text] [Related]  

  • 15. Structure of motor variability in marginally redundant multifinger force production tasks.
    Latash ML; Scholz JF; Danion F; Schöner G
    Exp Brain Res; 2001 Nov; 141(2):153-65. PubMed ID: 11713627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model.
    Latash ML; Shim JK; Smilga AV; Zatsiorsky VM
    Biol Cybern; 2005 Mar; 92(3):186-91. PubMed ID: 15739110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the Determinants of Mechanical Advantage During Jumping: Consequences for Spring- and Muscle-Driven Movement.
    Olberding JP; Deban SM; Rosario MV; Azizi E
    Integr Comp Biol; 2019 Dec; 59(6):1515-1524. PubMed ID: 31397849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyographic and biomechanical characteristics of segmental postural adjustments associated with voluntary wrist movements. Influence of an elbow support.
    Chabran E; Maton B; Ribreau C; Fourment A
    Exp Brain Res; 2001 Nov; 141(2):133-45. PubMed ID: 11713625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-joint dynamics and the development of movement control.
    Otten E
    Neural Plast; 2005; 12(2-3):89-98; discussion 263-72. PubMed ID: 16097477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force sharing among fingers as a model of the redundancy problem.
    Li ZM; Latash ML; Zatsiorsky VM
    Exp Brain Res; 1998 Apr; 119(3):276-86. PubMed ID: 9551828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.