BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 19228060)

  • 1. SDS surfactants on carbon nanotubes: aggregate morphology.
    Tummala NR; Striolo A
    ACS Nano; 2009 Mar; 3(3):595-602. PubMed ID: 19228060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations.
    Tummala NR; Morrow BH; Resasco DE; Striolo A
    ACS Nano; 2010 Dec; 4(12):7193-204. PubMed ID: 21128672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of surfactants in carbon nanotubes density gradient separation.
    Carvalho EJ; dos Santos MC
    ACS Nano; 2010 Feb; 4(2):765-70. PubMed ID: 20055484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of stability of nanotube dispersions using surface tension isotherms.
    Sa V; Kornev KG
    Langmuir; 2011 Nov; 27(22):13451-60. PubMed ID: 21961935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersing nanotubes with surfactants: a microscopic statistical mechanical analysis.
    Patel N; Egorov SA
    J Am Chem Soc; 2005 Oct; 127(41):14124-5. PubMed ID: 16218573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions.
    McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field.
    Nair N; Kim WJ; Braatz RD; Strano MS
    Langmuir; 2008 Mar; 24(5):1790-5. PubMed ID: 18211104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.
    Hilmer AJ; McNicholas TP; Lin S; Zhang J; Wang QH; Mendenhall JD; Song C; Heller DA; Barone PW; Blankschtein D; Strano MS
    Langmuir; 2012 Jan; 28(2):1309-21. PubMed ID: 22136192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes.
    Clark MD; Subramanian S; Krishnamoorti R
    J Colloid Interface Sci; 2011 Feb; 354(1):144-51. PubMed ID: 21084094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of endohedral water on diameter sorting of single-walled carbon nanotubes by density gradient centrifugation.
    Quintillá A; Hennrich F; Lebedkin S; Kappes MM; Wenzel W
    Phys Chem Chem Phys; 2010 Jan; 12(4):902-8. PubMed ID: 20066375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of carbon nanotube dispersion using surfactants.
    Rastogi R; Kaushal R; Tripathi SK; Sharma AL; Kaur I; Bharadwaj LM
    J Colloid Interface Sci; 2008 Dec; 328(2):421-8. PubMed ID: 18848704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the carbon nanotube-to-medium conductivity ratio for dielectrophoretic separation.
    Kang J; Hong S; Kim Y; Baik S
    Langmuir; 2009 Nov; 25(21):12471-4. PubMed ID: 19817475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water.
    Martin W; Zhu W; Krilov G
    J Phys Chem B; 2008 Dec; 112(50):16076-89. PubMed ID: 19367836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the stability of multiwalled carbon nanotube dispersions in water.
    Marsh DH; Rance GA; Zaka MH; Whitby RJ; Khlobystov AN
    Phys Chem Chem Phys; 2007 Oct; 9(40):5490-6. PubMed ID: 17925975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes.
    Cheng H; Cooper AC; Pez GP; Kostov MK; Piotrowski P; Stuart SJ
    J Phys Chem B; 2005 Mar; 109(9):3780-6. PubMed ID: 16851425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.
    Konduri S; Mukherjee S; Nair S
    ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saturation of surfactant structure at the single-walled carbon nanotube surface.
    Duque JG; Densmore CG; Doorn SK
    J Am Chem Soc; 2010 Nov; 132(45):16165-75. PubMed ID: 20973529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes.
    Niyogi S; Densmore CG; Doorn SK
    J Am Chem Soc; 2009 Jan; 131(3):1144-53. PubMed ID: 19154177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes.
    Das SK; Sengupta S; Velarde L
    J Phys Chem Lett; 2016 Jan; 7(2):320-6. PubMed ID: 26730991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.