These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 19228070)
1. Electronic structure of the metal center in the Cd(2+), Zn(2+), and Cu(2+) substituted forms of KDO8P synthase: implications for catalysis. Kona F; Tao P; Martin P; Xu X; Gatti DL Biochemistry; 2009 Apr; 48(16):3610-30. PubMed ID: 19228070 [TBL] [Abstract][Full Text] [Related]
2. Structural and mechanistic changes along an engineered path from metallo to nonmetallo 3-deoxy-D-manno-octulosonate 8-phosphate synthases. Kona F; Xu X; Martin P; Kuzmic P; Gatti DL Biochemistry; 2007 Apr; 46(15):4532-44. PubMed ID: 17381075 [TBL] [Abstract][Full Text] [Related]
3. The use of (E)- and (Z)-phosphoenol-3-fluoropyruvate as mechanistic probes reveals significant differences between the active sites of KDO8P and DAHP synthases. Furdui CM; Sau AK; Yaniv O; Belakhov V; Woodard RW; Baasov T; Anderson KS Biochemistry; 2005 May; 44(19):7326-35. PubMed ID: 15882071 [TBL] [Abstract][Full Text] [Related]
4. Targeting the role of a key conserved motif for substrate selection and catalysis by 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Allison TM; Hutton RD; Cochrane FC; Yeoman JA; Jameson GB; Parker EJ Biochemistry; 2011 May; 50(18):3686-95. PubMed ID: 21438567 [TBL] [Abstract][Full Text] [Related]
5. Crystal structures of Escherichia coli KDO8P synthase complexes reveal the source of catalytic irreversibility. Vainer R; Belakhov V; Rabkin E; Baasov T; Adir N J Mol Biol; 2005 Aug; 351(3):641-52. PubMed ID: 16023668 [TBL] [Abstract][Full Text] [Related]
6. The energy landscape of 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Tao P; Gatti DL; Schlegel HB Biochemistry; 2009 Dec; 48(49):11706-14. PubMed ID: 19891460 [TBL] [Abstract][Full Text] [Related]
7. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range. Li Z; Sau AK; Furdui CM; Anderson KS Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047 [TBL] [Abstract][Full Text] [Related]
8. An extended β7α7 substrate-binding loop is essential for efficient catalysis by 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Allison TM; Hutton RD; Jiao W; Gloyne BJ; Nimmo EB; Jameson GB; Parker EJ Biochemistry; 2011 Nov; 50(43):9318-27. PubMed ID: 21942786 [TBL] [Abstract][Full Text] [Related]
9. Function of His185 in Aquifex aeolicus 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Wang J; Duewel HS; Stuckey JA; Woodard RW; Gatti DL J Mol Biol; 2002 Nov; 324(2):205-14. PubMed ID: 12441100 [TBL] [Abstract][Full Text] [Related]
10. Reversing evolution: re-establishing obligate metal ion dependence in a metal-independent KDO8P synthase. Cochrane FC; Cookson TV; Jameson GB; Parker EJ J Mol Biol; 2009 Jul; 390(4):646-61. PubMed ID: 19447118 [TBL] [Abstract][Full Text] [Related]
11. Structural studies on Helicobacter pylori 3-deoxy-D-manno-2-octulosonate-8-phosphate synthase using electrospray ionization mass spectrometry: a tetrameric complex composed of dimeric dimers. Li Z; Sau AK Rapid Commun Mass Spectrom; 2009 Jun; 23(11):1573-8. PubMed ID: 19399763 [TBL] [Abstract][Full Text] [Related]
12. Structures of Aquifex aeolicus KDO8P synthase in complex with R5P and PEP, and with a bisubstrate inhibitor: role of active site water in catalysis. Wang J; Duewel HS; Woodard RW; Gatti DL Biochemistry; 2001 Dec; 40(51):15676-83. PubMed ID: 11747443 [TBL] [Abstract][Full Text] [Related]
13. Substrate and metal complexes of 3-deoxy-D-manno-octulosonate-8-phosphate synthase from Aquifex aeolicus at 1.9-A resolution. Implications for the condensation mechanism. Duewel HS; Radaev S; Wang J; Woodard RW; Gatti DL J Biol Chem; 2001 Mar; 276(11):8393-402. PubMed ID: 11115499 [TBL] [Abstract][Full Text] [Related]
15. Substrate ambiguity and crystal structure of Pyrococcus furiosus 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase: an ancestral 3-deoxyald-2-ulosonate-phosphate synthase? Schofield LR; Anderson BF; Patchett ML; Norris GE; Jameson GB; Parker EJ Biochemistry; 2005 Sep; 44(36):11950-62. PubMed ID: 16142893 [TBL] [Abstract][Full Text] [Related]
16. Substrate and metal complexes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae provide new insights into the catalytic mechanism. König V; Pfeil A; Braus GH; Schneider TR J Mol Biol; 2004 Mar; 337(3):675-90. PubMed ID: 15019786 [TBL] [Abstract][Full Text] [Related]
17. 3-Deoxy-D-manno-octulosonate-8-phosphate synthase from Escherichia coli. Model of binding of phosphoenolpyruvate and D-arabinose-5-phosphate. Wagner T; Kretsinger RH; Bauerle R; Tolbert WD J Mol Biol; 2000 Aug; 301(2):233-8. PubMed ID: 10926505 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation. Shumilin IA; Bauerle R; Wu J; Woodard RW; Kretsinger RH J Mol Biol; 2004 Aug; 341(2):455-66. PubMed ID: 15276836 [TBL] [Abstract][Full Text] [Related]
19. Designing a metal-binding site in the scaffold of Escherichia coli KDO8PS. Oliynyk Z; Briseño-Roa L; Janowitz T; Sondergeld P; Fersht AR Protein Eng Des Sel; 2004 Apr; 17(4):383-90. PubMed ID: 15166313 [TBL] [Abstract][Full Text] [Related]
20. Structure-based design of novel inhibitors of 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Xu X; Wang J; Grison C; Petek S; Coutrot P; Birck MR; Woodard RW; Gatti DL Drug Des Discov; 2003; 18(2-3):91-9. PubMed ID: 14675946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]