BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 19228644)

  • 1. An improved processing method for breast whole-mount serial sections for three-dimensional histopathology imaging.
    Sun L; Wang D; Zubovits JT; Yaffe MJ; Clarke GM
    Am J Clin Pathol; 2009 Mar; 131(3):383-92. PubMed ID: 19228644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole-specimen histopathology: a method to produce whole-mount breast serial sections for 3-D digital histopathology imaging.
    Clarke GM; Eidt S; Sun L; Mawdsley G; Zubovits JT; Yaffe MJ
    Histopathology; 2007 Jan; 50(2):232-42. PubMed ID: 17222252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-rapid microwave-stimulated tissue processing with a modified protocol incorporating microwave fixation.
    Hafajee ZA; Leong AS
    Pathology; 2004 Aug; 36(4):325-9. PubMed ID: 15370131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of a new rapid tissue processing method--advantages and challenges.
    Munkholm J; Talman ML; Hasselager T
    Pathol Res Pract; 2008; 204(12):899-904. PubMed ID: 18789605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional nonlinear image reconstruction for microwave biomedical imaging.
    Zhang ZQ; Liu QH
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):544-8. PubMed ID: 15000387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of immunohistochemical stain quality in conventional and rapid microwave processed tissues.
    Emerson LL; Tripp SR; Baird BC; Layfield LJ; Rohr LR
    Am J Clin Pathol; 2006 Feb; 125(2):176-83. PubMed ID: 16393680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing specimen coverage using digital whole-mount breast pathology: implementation, clinical feasibility and application in research.
    Clarke GM; Peressotti C; Constantinou P; Hosseinzadeh D; Martel A; Yaffe MJ
    Comput Med Imaging Graph; 2011; 35(7-8):531-41. PubMed ID: 21652176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser surface estimation for microwave breast imaging systems.
    Williams TC; Bourqui J; Cameron TR; Okoniewski M; Fear EC
    IEEE Trans Biomed Eng; 2011 May; 58(5):1193-9. PubMed ID: 21147590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of truncated pyramid representation methodology in three-dimensional reconstruction: an example.
    Papadimitriou C; Yapijakis C; Davaki P
    J Microsc; 2004 Apr; 214(Pt 1):70-5. PubMed ID: 15049870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-assisted tissue processing: real impact on the histology workflow.
    Buesa RJ
    Ann Diagn Pathol; 2007 Jun; 11(3):206-11. PubMed ID: 17498595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Undecalcified temporal bone morphology: a methodology useful for gross to fine observation and three-dimensional reconstruction.
    Fujiyoshi T; Mogi G; Watanabe T; Matsushita F
    Acta Otolaryngol Suppl; 1992; 493():7-13. PubMed ID: 1636426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-multistatic MIST beamforming for the early detection of breast cancer.
    O'Halloran M; Jones E; Glavin M
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):830-40. PubMed ID: 19258193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave technique in histopathology and its comparison with the conventional technique.
    Chaudhari K; Chattopadhyay A; Dutta SK
    Indian J Pathol Microbiol; 2000 Oct; 43(4):387-94. PubMed ID: 11344600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking with virtual slides: a tool to study diagnostic error in histopathology.
    Treanor D; Lim CH; Magee D; Bulpitt A; Quirke P
    Histopathology; 2009 Jul; 55(1):37-45. PubMed ID: 19614765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-stimulated formaldehyde fixation of experimental renal biopsy tissues: computerised morphometric analysis of distortion artefacts.
    Looi LM; Loh KC
    Malays J Pathol; 2005 Jun; 27(1):23-7. PubMed ID: 16676689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of routine and rapid microwave tissue processing in a surgical pathology laboratory. Quality of histologic sections and advantages of microwave processing.
    Rohr LR; Layfield LJ; Wallin D; Hardy D
    Am J Clin Pathol; 2001 May; 115(5):703-8. PubMed ID: 11345834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D-microwave breast tumor detection: study of system performance.
    de Lorenzo Rodríguez ME; Vera-Isasa M; Santalla del Río V
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2772-7. PubMed ID: 19126457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled serial grinding for high-resolution three-dimensional reconstruction.
    Chinga G; Johnsen PO; Diserud O
    J Microsc; 2004 Apr; 214(Pt 1):13-21. PubMed ID: 15049863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A method of preparing sections for express histological diagnosis].
    Zubkova TV; Tarnopol'skaia OV; Makarov VL; Nemykin VI; Marmarova TIu
    Arkh Patol; 2000; 62(4):46-8. PubMed ID: 10971874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-specimen-flow, high-throughput, 1-hour tissue processing. A system for rapid diagnostic tissue preparation.
    Morales AR; Essenfeld H; Essenfeld E; Duboue MC; Vincek V; Nadji M
    Arch Pathol Lab Med; 2002 May; 126(5):583-90. PubMed ID: 11958665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.