These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19229198)

  • 1. A robust plant RNA isolation method suitable for Affymetrix GeneChip analysis and quantitative real-time RT-PCR.
    Bilgin DD; DeLucia EH; Clough SJ
    Nat Protoc; 2009; 4(3):333-40. PubMed ID: 19229198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modified protocol for RNA extraction from different peach tissues suitable for gene isolation and real-time PCR analysis.
    Tong Z; Qu S; Zhang J; Wang F; Tao J; Gao Z; Zhang Z
    Mol Biotechnol; 2012 Mar; 50(3):229-36. PubMed ID: 21744035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study.
    Cao W; Epstein C; Liu H; DeLoughery C; Ge N; Lin J; Diao R; Cao H; Long F; Zhang X; Chen Y; Wright PS; Busch S; Wenck M; Wong K; Saltzman AG; Tang Z; Liu L; Zilberstein A
    BMC Genomics; 2004 Apr; 5(1):26. PubMed ID: 15113399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcript profiling of common bean (Phaseolus vulgaris L.) using the GeneChip Soybean Genome Array: optimizing analysis by masking biased probes.
    Yang SS; Valdés-López O; Xu WW; Bucciarelli B; Gronwald JW; Hernández G; Vance CP
    BMC Plant Biol; 2010 May; 10():85. PubMed ID: 20459672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-Length gene enrichment by using an optimized RNA isolation protocol in Bixa orellana recalcitrant tissues.
    Rodríguez-Avila NL; Narváez-Zapata JA; Aguilar-Espinosa ML; Rivera-Madrid R
    Mol Biotechnol; 2009 May; 42(1):84-90. PubMed ID: 19107604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generic plant RNA isolation method suitable for RNA-Seq and suppression subtractive hybridization.
    Zhu YQ; Wu WJ; Xiao HW; Chen HB; Zheng Y; Zhang YJ; Wang HX; Huang LQ
    Genet Mol Res; 2013 Nov; 12(4):5537-46. PubMed ID: 24301924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High quality RNA extraction of the mammalian cochlea for qRT-PCR and transcriptome analyses.
    Vikhe Patil K; Canlon B; Cederroth CR
    Hear Res; 2015 Jul; 325():42-8. PubMed ID: 25818515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimized isolation protocol yields high-quality RNA from cassava tissues (
    Behnam B; Bohorquez-Chaux A; Castaneda-Mendez OF; Tsuji H; Ishitani M; Becerra Lopez-Lavalle LA
    FEBS Open Bio; 2019 Apr; 9(4):814-825. PubMed ID: 30984554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of plant RNA.
    Salter MG; Conlon HE
    Methods Mol Biol; 2007; 362():309-14. PubMed ID: 17417018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of high-quality RNA from Reaumuria soongorica, a desert plant rich in secondary metabolites.
    Wang X; Xiao H; Chen G; Zhao X; Huang C; Chen C; Wang F
    Mol Biotechnol; 2011 Jun; 48(2):165-72. PubMed ID: 21136208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants.
    Gambino G; Perrone I; Gribaudo I
    Phytochem Anal; 2008; 19(6):520-5. PubMed ID: 18618437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of photoperiodic growth condition on isolation of RNA from strawberry (Fragaria x ananassa Duch.) tissue.
    Mazzara M; James DJ
    Mol Biotechnol; 2000 Jul; 15(3):237-41. PubMed ID: 10986699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides.
    Japelaghi RH; Haddad R; Garoosi GA
    Mol Biotechnol; 2011 Oct; 49(2):129-37. PubMed ID: 21302150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of oligonucleotide microarray data using microfluidic low-density arrays: a new statistical method to normalize real-time RT-PCR data.
    Abruzzo LV; Lee KY; Fuller A; Silverman A; Keating MJ; Medeiros LJ; Coombes KR
    Biotechniques; 2005 May; 38(5):785-92. PubMed ID: 15945375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of High-Quality Total RNA from Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook).
    Ma Z; Huang B; Xu S; Chen Y; Li S; Lin S
    PLoS One; 2015; 10(6):e0130234. PubMed ID: 26083257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and purification of functional total RNA from woody branches and needles of Sitka and white spruce.
    Wang SX; Hunter W; Plant A
    Biotechniques; 2000 Feb; 28(2):292-6. PubMed ID: 10683739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative cetyltrimethylammonium bromide-based protocol for RNA isolation from blackberry (Rubus L.).
    Chen Q; Yu HW; Wang XR; Xie XL; Yue XY; Tang HR
    Genet Mol Res; 2012 Jun; 11(2):1773-82. PubMed ID: 22843054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two modified RNA extraction methods compatible with transcript profiling and gene expression analysis for cotton roots.
    Xie C; Wang C; Wang X; Yang X
    Prep Biochem Biotechnol; 2013; 43(5):500-11. PubMed ID: 23581784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction and labeling methods for microarrays using small amounts of plant tissue.
    Stimpson AJ; Pereira RS; Kiss JZ; Correll MJ
    Physiol Plant; 2009 Mar; 135(3):229-36. PubMed ID: 19140889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved CTAB-ammonium acetate method for total RNA isolation from cotton.
    Zhao L; Ding Q; Zeng J; Wang FR; Zhang J; Fan SJ; He XQ
    Phytochem Anal; 2012; 23(6):647-50. PubMed ID: 22552877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.