BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 19229298)

  • 1. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3.
    Gamerdinger M; Hajieva P; Kaya AM; Wolfrum U; Hartl FU; Behl C
    EMBO J; 2009 Apr; 28(7):889-901. PubMed ID: 19229298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BAG3 and friends: co-chaperones in selective autophagy during aging and disease.
    Behl C
    Autophagy; 2011 Jul; 7(7):795-8. PubMed ID: 21681022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch.
    Minoia M; Boncoraglio A; Vinet J; Morelli FF; Brunsting JF; Poletti A; Krom S; Reits E; Kampinga HH; Carra S
    Autophagy; 2014 Sep; 10(9):1603-21. PubMed ID: 25046115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease.
    Behl C
    Trends Pharmacol Sci; 2016 Aug; 37(8):672-688. PubMed ID: 27162137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes.
    Ji C; Tang M; Zeidler C; Höhfeld J; Johnson GV
    Autophagy; 2019 Jul; 15(7):1199-1213. PubMed ID: 30744518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress.
    Chakraborty D; Felzen V; Hiebel C; Stürner E; Perumal N; Manicam C; Sehn E; Grus F; Wolfrum U; Behl C
    Redox Biol; 2019 Jun; 24():101181. PubMed ID: 30959460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy.
    Carra S; Seguin SJ; Landry J
    Autophagy; 2008 Feb; 4(2):237-9. PubMed ID: 18094623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the origin of BAG(3) and its consequences for an expansion of BAG3's role in protein homeostasis.
    Baeken MW; Behl C
    J Cell Biochem; 2022 Jan; 123(1):102-114. PubMed ID: 33942360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. At the Crossroads of Apoptosis and Autophagy: Multiple Roles of the Co-Chaperone BAG3 in Stress and Therapy Resistance of Cancer.
    Kögel D; Linder B; Brunschweiger A; Chines S; Behl C
    Cells; 2020 Feb; 9(3):. PubMed ID: 32121220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cleavage product of amyloid-β protein precursor sAβPPα modulates BAG3-dependent aggresome formation and enhances cellular proteasomal activity.
    Renziehausen J; Hiebel C; Nagel H; Kundu A; Kins S; Kögel D; Behl C; Hajieva P
    J Alzheimers Dis; 2015; 44(3):879-96. PubMed ID: 25362034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WW domain of BAG3 is required for the induction of autophagy in glioma cells.
    Merabova N; Sariyer IK; Saribas AS; Knezevic T; Gordon J; Turco MC; Rosati A; Weaver M; Landry J; Khalili K
    J Cell Physiol; 2015 Apr; 230(4):831-41. PubMed ID: 25204229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-chaperone BAG3 enters autophagic pathway via its interaction with microtubule associated protein 1 light chain 3 beta.
    Körschgen H; Baeken M; Schmitt D; Nagel H; Behl C
    Traffic; 2023 Dec; 24(12):564-575. PubMed ID: 37654251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone Marrow Stromal Cell Transplantation Drives Molecular Switch from Autophagy to the Ubiquitin-Proteasome System in Ischemic Stroke Mice.
    Tadokoro K; Fukui Y; Yamashita T; Liu X; Tsunoda K; Shang J; Morihara R; Nakano Y; Tian F; Sasaki R; Matsumoto N; Nomura E; Shi X; Omote Y; Takemoto M; Hishikawa N; Ohta Y; Abe K
    J Stroke Cerebrovasc Dis; 2020 May; 29(5):104743. PubMed ID: 32127256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role of BAG3 in regulating SNCA/α-synuclein clearance via selective macroautophagy.
    Cao YL; Yang YP; Mao CJ; Zhang XQ; Wang CT; Yang J; Lv DJ; Wang F; Hu LF; Liu CF
    Neurobiol Aging; 2017 Dec; 60():104-115. PubMed ID: 28941726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HSPB8 and BAG3 cooperate to promote spatial sequestration of ubiquitinated proteins and coordinate the cellular adaptive response to proteasome insufficiency.
    Guilbert SM; Lambert H; Rodrigue MA; Fuchs M; Landry J; Lavoie JN
    FASEB J; 2018 Jul; 32(7):3518-3535. PubMed ID: 29405094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells.
    Liu BQ; Du ZX; Zong ZH; Li C; Li N; Zhang Q; Kong DH; Wang HQ
    Autophagy; 2013 Jun; 9(6):905-16. PubMed ID: 23575457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological inhibition of BAG3-HSP70 with the proposed cancer therapeutic JG-98 is toxic for cardiomyocytes.
    Martin TG; Delligatti CE; Muntu NA; Stachowski-Doll MJ; Kirk JA
    J Cell Biochem; 2022 Jan; 123(1):128-141. PubMed ID: 34487557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.
    Stürner E; Behl C
    Front Mol Neurosci; 2017; 10():177. PubMed ID: 28680391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins.
    Gamerdinger M; Carra S; Behl C
    J Mol Med (Berl); 2011 Dec; 89(12):1175-82. PubMed ID: 21818581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardioprotection of exercise preconditioning involving heat shock protein 70 and concurrent autophagy: a potential chaperone-assisted selective macroautophagy effect.
    Yuan Y; Pan SS; Shen YJ
    J Physiol Sci; 2018 Jan; 68(1):55-67. PubMed ID: 27928720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.