These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19229330)

  • 1. Quantitative trait evolution and environmental change.
    Björklund M; Ranta E; Kaitala V; Bach LA; Lundberg P; Stenseth NC
    PLoS One; 2009; 4(2):e4521. PubMed ID: 19229330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary speed of species invasions.
    García-Ramos G; Rodríguez D
    Evolution; 2002 Apr; 56(4):661-8. PubMed ID: 12038524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains.
    Etterson JR
    Evolution; 2004 Jul; 58(7):1459-71. PubMed ID: 15341149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary Rescue in a Linearly Changing Environment: Limits on Predictability.
    Orive ME; Holt RD; Barfield M
    Bull Math Biol; 2019 Nov; 81(11):4821-4839. PubMed ID: 30218277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental quality and evolutionary potential: lessons from wild populations.
    Charmantier A; Garant D
    Proc Biol Sci; 2005 Jul; 272(1571):1415-25. PubMed ID: 16011915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuations in lifetime selection in an autocorrelated environment.
    Cotto O; Chevin LM
    Theor Popul Biol; 2020 Aug; 134():119-128. PubMed ID: 32275919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental coupling of selection and heritability limits evolution.
    Wilson AJ; Pemberton JM; Pilkington JG; Coltman DW; Mifsud DV; Clutton-Brock TH; Kruuk LE
    PLoS Biol; 2006 Jul; 4(7):e216. PubMed ID: 16756391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Genetic Architecture of Fitness Drives Population Viability during Rapid Environmental Change.
    Kardos M; Luikart G
    Am Nat; 2021 May; 197(5):511-525. PubMed ID: 33908831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic lag and population extinction in the moving-optimum model: insights from a small-jumps limit.
    Kopp M; Nassar E; Pardoux E
    J Math Biol; 2018 Nov; 77(5):1431-1458. PubMed ID: 29980824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate.
    Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R
    Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic Evolutionary Demography under a Fluctuating Optimum Phenotype.
    Chevin LM; Cotto O; Ashander J
    Am Nat; 2017 Dec; 190(6):786-802. PubMed ID: 29166162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evolutionary tipping point in a changing environment.
    Osmond MM; Klausmeier CA
    Evolution; 2017 Dec; 71(12):2930-2941. PubMed ID: 28986985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple versus complex models of trait evolution and stasis as a response to environmental change.
    Hunt G; Hopkins MJ; Lidgard S
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4885-90. PubMed ID: 25901309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heritability of climate-relevant traits in a rainforest skink.
    Martins F; Kruuk L; Llewelyn J; Moritz C; Phillips B
    Heredity (Edinb); 2019 Jan; 122(1):41-52. PubMed ID: 29789644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and stability of the G-matrix on a landscape with a moving optimum.
    Jones AG; Arnold SJ; Bürger R
    Evolution; 2004 Aug; 58(8):1639-54. PubMed ID: 15446419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components.
    Kristensen TN; Sørensen AC; Sorensen D; Pedersen KS; Sørensen JG; Loeschcke V
    J Evol Biol; 2005 Jul; 18(4):763-70. PubMed ID: 16033547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Environmental Fluctuations on Evolutionary Fitness Functions.
    Melbinger A; Vergassola M
    Sci Rep; 2015 Oct; 5():15211. PubMed ID: 26477392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolvability meets biogeography: evolutionary potential decreases at high and low environmental favourability.
    Martínez-Padilla J; Estrada A; Early R; Garcia-Gonzalez F
    Proc Biol Sci; 2017 Jun; 284(1856):. PubMed ID: 28615500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant evolutionary history mainly explains the variance in biomass responses to climate warming at a global scale.
    Shao J; Yuan T; Li Z; Li N; Liu H; Bai SH; Xia J; Lu M; Zhou X
    New Phytol; 2019 May; 222(3):1338-1351. PubMed ID: 30664250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change.
    Diamond SE
    Ann N Y Acad Sci; 2017 Feb; 1389(1):5-19. PubMed ID: 27706832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.